A CLASS OF COUNTABLY PARACOMPACT SPACES

PHILLIP ZENOR

A space X is said to have property @ if for any well-ordered monotone decreasing family $\{H_a | a \in A\}$ of closed sets with no common part, there is a monotone decreasing family of domains $\{D_a | a \in A\}$ such that

- (i) $H_a \subset D_a$ for each a in A and
- (ii) $\{cl(D_a) | a \in A\}$ has no common part.

It is shown that property $\mathfrak B$ characterizes the separable T_3 -spaces that are Lindelöf and the countably compact spaces that are compact. Also, it is shown that the T_3 -space X is Lindelöf if and only if X has property $\mathfrak B$ and every uncountable subset of X has a limit point.

Throughout this paper, topological spaces are assumed to be T_1 -spaces.

1. Preliminary results and lemmas.

1.1. If X has property \mathfrak{B} , then X is countably paracompact.

This is immediate from [1] where it is shown that X is countably paracompact if and only if for any countable decreasing sequence of closed sets $\{H_n\}$ with no common part, there is a monotone decreasing sequence of domains $\{D_n\}$ such that

- (i) for each n, $H_n \subset D_n$ and
- (ii) $\{cl(D_n)\}$ has no common part.
- 1.2. If X is paracompact, then X has property \mathfrak{B} .

PROOF. Let $\{H_a \mid a \in A\}$ denote a well-ordered, monotone family of closed sets with no common part. Then $\{G_a = X - H_a \mid a \in A\}$ is an open cover of X. Hence, there is a locally finite open refinement $\{G'_a \mid a \in A\}$ of $\{G_a \mid a \in A\}$ such that $G'_a \subset G_a$ for each a in A. For each a in A, let $D_a = \bigcup \{G'_b \mid b \in A, b \geq a\}$. $\{D_a \mid a \in A\}$ satisfies the conditions for property \mathfrak{B} .

1.3. THEOREM. If the T_2 -space X has property \mathfrak{B} , then X is T_3 .

PROOF. Suppose the contrary; that is, suppose that there is a closed set H and a point P not in H such that if O is an open set containing H, then P is in cl(O). Let G be an open cover of H of minimal cardinal ρ such that if g is in G then cl(g) does not contain P. Note that it follows from the supposition that ρ cannot be finite.

Received by the editors October 11, 1968.

¹ Part of these results were presented to the American Mathematical Society, January 25, 1969. This research was partially supported by NASA Grants NsG(T)-52 and NGR-44-005-037. Part of these results are contained in the author's doctoral thesis at the University of Houston.

Let $\{g_a \mid a \in A\}$ be a well-ordering of G according to the initial ordinal of cardinal ρ . Then $\{h_a = H - \bigcup_{b < a} g_b \mid a \in A\}$ is a well-ordered monotone decreasing family of closed sets with no common part. Since S has property \mathfrak{B} , there is a domain D containing $h_{a'}$, for some a' in A, such that P does not belong to cl(D). Hence, $G' = \{g_b \mid b \leq a'\}$ cup D is an open cover of B such that if $B \in G'$, then B is not in cl(B). But the cardinality of B is less than B which is a contradiction from which the theorem follows.

The following example, brought to the attention of the author by John Mack, shows that property & cannot be replaced by countable paracompactness in Theorem 1.3.

Let $[0, \Omega)$ denote the segment of countable ordinals, where Ω denotes the first uncountable ordinal and let $[0, \Omega] = [0, \Omega) \cup \{\Omega\}$. Let $Y = [0, \Omega] \times [0, \Omega] - (\Omega, \Omega)$. Then $Y/(\Omega \times [0, \Omega))$ is a countably compact (and therefore countably paracompact) T_2 -space that is not T_3 . Related to Theorem 1.3 are the following questions:

- 1. If X is a T_2 -space with property \mathfrak{B} such that each closed set is a G_{δ} -set, then is X normal?
- 2. If X is a T_2 -space with property $\mathfrak B$ such that each closed subset of X is a G_δ -set, then is X hereditarily countably paracompact?

With techniques similar to those used in [2], Questions 1 and 2 can be shown to be equivalent.

Recall that the function f from X to Y is said to be a *proper* mapping if f is continuous, closed, and $f^{-1}(y)$ is compact for each y in Y.

1.4. THEOREM. If X has property \otimes and f is a proper mapping from X onto Y, then Y has property \otimes .

PROOF. Let $\{H_a \mid a \in A\}$ be a well-ordered, monotone decreasing family of closed sets in Y with no common part. Then $\{f^{-1}(H_a) \mid a \in A\}$ is a well-ordered monotone decreasing family of closed sets in X with no common part. Let $\{D_a \mid a \in A\}$ denote the family of domains in X given by property $\mathfrak B$ for $\{f^{-1}(H_a) \mid a \in A\}$. Let $O_a = Y - f(X - D_a)$ for each a in A. Then $\{O_a \mid a \in A\}$ is a well-ordered family of domains in Y such that $H_a \subset O_a$ for each a in A. Suppose that $y \in \bigcap_{a \in A} \operatorname{cl}(O_a)$. Then $f^{-1}(y)$ is a compact set that intersects $\operatorname{cl}(D_a)$ for each a in A which is impossible; and so, $\{\operatorname{cl}(O_a) \mid a \in A\}$ has no common part.

- 1.5. COROLLARY. If X has property \mathfrak{B} and Y is compact, then $X \times Y$ has property \mathfrak{B} .
- 1.6. LEMMA. If X has property @ and $\{K_a | a \in A\}$ is a well-ordered, countably centered, monotone decreasing family of closed sets in X with no common part, then there is an uncountable pair-wise disjoint family of nonempty domains and an uncountable, closed discrete subset of X.

PROOF. For each a in A, let

$$F_a = \bigcap_{b < a} K_b$$
 if a is a limit ordinal,
= K_a otherwise.

Then $\{F_a | a \in A\}$ is a well-ordered, countably centered, monotone decreasing family of closed sets with no common part. Let $\{D_a | a \in A\}$ be the collection of domains given by property $\mathfrak B$ for $\{F_a | a \in A\}$. For each a in A, the set $\{b \in A | D_a - \operatorname{cl}(D_b) \neq \emptyset\}$ is not empty. Let τ be the function from A into A that takes a into the first element of $\{b \in A | D_a - \operatorname{cl}(D_b) \neq \emptyset\}$. Observe that for each a in A, $\tau(a) > a$.

Let θ denote the function taking A into the power set of X by letting $\theta(0) = D_0 - \operatorname{cl}(D_{\tau(0)})$ and

$$\theta(b) = D_b - \operatorname{cl}(D_{\tau(b)})$$
 if $\sup\{\tau(a) \mid a < b\} \leq b$,
= \emptyset otherwise.

Clearly $\theta(A)$ is a pair-wise disjoint collection of domains. If it can be shown that $A' = \{a \in A \mid \theta(a) \neq \emptyset\}$ is cofinal in A, it will follow that $\theta(A)$ is uncountable; otherwise, $\{F_a \mid a \in A'\}$ would be a countable subcollection of $\{F_a \mid a \in A\}$ with no common part. To see that A' is cofinal in A, suppose the contrary; that is, suppose that $b = \sup A'$ is in A. Let $b_1 = \tau(b)$ and, proceeding by induction, let $b_{n+1} = \tau(b_n)$. The set $\{b_n \mid n = 1, 2, \cdots\}$ is not cofinal in A, since $\{F_b\}$ is countably centered, so $b_0 = \sup\{b_n\}$ is in A. Since τ is monotone nondecreasing, it follows that $\sup\{\tau(a) \mid a < b_0\} \leq b_0$; and so b_0 is in A'.

For each a in A', let P_a be a point of $\theta(a)$. To see that $\{P_a | a \in A'\}$ has no limit point, suppose the contrary; that is, suppose that P is a limit point of $\{P_a | a \in A'\}$. Since if a is a limit ordinal of A, $F_a = \bigcap_{b < a} F_b$, there is a last element a' of A such that $F_{a'}$ contains P. Let $\theta_1 = \{P_a | a \in A', a \leq a'\}$ and $\theta_2 = \{P_a | a \in A', a > a'\}$.

Since P does not belong to $F_{a'+1}$, P is not a limit point of \mathfrak{O}_2 ; and so, P must be a limit point of \mathfrak{O}_1 . If $\{a \in A' \mid a \leq a'\}$ has no last term, $D_{a'}$ is a domain containing P but no points of \mathfrak{O}_1 ; hence, $\{a \in A' \mid a \leq a'\}$ must have a last term, say b'. Then $D_{b'}$ is a domain containing P that contains only one point of \mathfrak{O}_1 , namely $P_{b'}$, which is a contradiction from which it follows that $\{P_a \mid a \in A'\}$ has no limit point.

1.7. Lemma. Suppose that X is a space with an uncountable, closed, discrete subspace H. If X has property \mathfrak{B} , then there are uncountably many mutually exclusive nonempty domains in X.

PROOF. Let K denote a subcollection of H with cardinality \aleph_1 . Let $\{P_a | a \in A\}$ be a well-ordering of K according to the least ordinal

of cardinal \aleph_1 . For each a in A, let $K_a = \{P_b | b \in A, b \ge a\}$. Then $\{K_a | a \in A\}$ is a well-ordered, monotone decreasing family of closed sets with no common part. Since the cardinality of K is \aleph_1 , $\{K_a | a \in A\}$ is countably centered; therefore, by Lemma 1.6, there is an uncountable family of mutually exclusive, nonempty domains in X.

A space X is said to have the *Souslin property* if there is no uncountable collection of mutually exclusive nonempty domains in X.

- 1.8. COROLLARY. If the space S has the Souslin property and property \mathfrak{B} , then every uncountable subset of X has a limit point.
- 1.9. COROLLARY. If X is a separable space with property \mathfrak{B} , then every uncountable subset of X has a limit point.

The following result, due to W. B. Sconyers [3, Theorem 3], is stated as a lemma.

1.10. Lemma. The T_3 -space X is Lindelöf if and only if for each well-ordered, monotone increasing family $\mathfrak D$ of domains covering the space, there is a countable collection of closed sets that refines $\mathfrak D$ and covers X.

2. Main results.

- 2.1. THEOREM. The T_3 -space X is Lindelöf if and only if
- (i) X has property B and
- (ii) every uncountable subset of X has a limit point.

PROOF. It is well known that if X is Lindelöf, then X is paracompact; and so, by 1.2, X has property \mathfrak{B} .

Suppose that (i) and (ii) are satisfied. By Lemma 1.10, it is sufficient to show that there is a countable collection, $\{F_n\}$, of closed sets refining $\{D_a | a \in A\}$ and covering X, where $\{D_a | a \in A\}$ is a well-ordered, monotone increasing open cover of X. It follows easily from Lemma 1.6 that there is a countable subset B of A such that $\{D_b | b \in B\}$ covers X. Hence, $\{E_b = X - D_b | b \in B\}$ is a countable, well-ordered family of closed sets with no common part. Let $\{G_b | b \in B\}$ be the domains given for $\{E_b | b \in B\}$ by property \mathfrak{B} . Then $\{F_b = X - G_b | b \in B\}$ is the desired collection of closed sets.

2.2. COROLLARY. The countably compact T_3 -space X is compact if and only if X has property \mathfrak{B} .

The following theorems follow immediately from Theorem 2.1, Lemma 1.7 and Corollary 1.8:

2.3. THEOREM. If the T_3 -space X has the Souslin Property, then X is Lindelöf if and only if X has property \mathfrak{B} .

2.4. THEOREM. The separable T_3 -space X is Lindelöf if and only if X has property \mathfrak{B} .

REFERENCES

- 1. F. Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686-687. MR 17, 650.
 - 2. P. Zenor, On countable paracompactness and normality, Prace Mat. (to appear).
- 3. W. B. Sconyers, Concerning the Lindelöf property, Notices Amer. Math. Soc. 15 (1968), 342. Abstract #654-19.

University of Houston and Auburn University