A RESULT OF BASS ON CYCLOTOMIC EXTENSION FIELDS¹

JOHN H. SMITH

In [1] Bass stated the result given below as Proposition 1 and derived some consequences. His proof of the proposition itself, however, contains a gap; Lemmas 2 and 3 are false as stated. The purpose of this note is to fill the gap by proving the slightly stronger Proposition 2.

We retain the notation of [1]. In particular $k_m = k(\zeta_m)$ where $\zeta_m = e^{2\pi i l m}$. The letters m, n, a, b, c, d, r, s, t, u, v will denote nonnegative integers, p is a prime integer, and K = k(i).

PROPOSITION 1. Given k and n, there is an m such that $k_m^{*m} \cap k^* \subset k^{*n}$.

PROPOSITION 2. Given k there is an m such that for all n, $k_{mn}^{*mn} \cap k^* \subset k^{*n}$.

LEMMA 1. Suppose $i \in k$ if p = 2. Then if $r = p^a$, $k_r^* \cap k^* \subset k^{*r}$. (For proof see p. 39 of [2].)

LEMMA 2. Given p and k with $i \in k$ if p = 2, suppose $r = p^a$ and v are such that $\zeta_{pr} \in k_v$. Then for all $t = p^c$, $k_v^{*rt} \cap k^* \subset k^{*t}$.

PROOF. If c = 0 the result is trivial; assume c > 0.

Case 1. $\zeta_p \in k$ or $\zeta_p \notin k_v$.

For any $u = p^d$, d > 0, any ruth power, $z \in k^*$ of an element in k_v^* is a pth power of an element in k^* . If not, $X^{ru} - z$ would be irreducible over k [3, p. 221], hence all its roots would lie in k_v , which is normal over k, hence $\zeta_{ru} \in k_v$, contrary to supposition.

Therefore, if $x = y^{rt}$, $x \in k$, $y \in k_v^*$, then $x = w^p$, $w \in k^*$, and $w^{-1}y^{rt/p}$ is a pth root of 1 in k_v , hence in k, and $y^{rt/p} \in k$. Repeating the argument if necessary we conclude, $y^r \in k^*$, $x = y^{rt} \in k^{*t}$.

Case 2. $\zeta_p \in k$, $\zeta_p \in k_v$.

If $x \in k$ is an *rt*th power of something in k_r then by Case 1, x is a tth power of something in $k_p \subset k_r$. Taking norms from k_p to k and noting that $[k_p:k]$ is prime to t gives the result.

LEMMA 3. Let $s=2^b$ be such that $\zeta_{2a} \notin K$. Then for any $t=2^c$, $K^{*'} \cap k^* \cap k^*$.

Received by the editors February 3, 1969.

¹ Part of this work was done at a National Science Foundation Advanced Science Seminar at Bowdoin College, Summer, 1968.

PROOF (FOLLOWING [2]). Let $x = y^{st}$, $x \in k^*$, $y \in K^*$. If $y \in k^*$ there is nothing to prove, so assume $u = 2^d$ such that $y^u \notin k^*$, $y^{2u} \in k^*$. Then $y^u = iz$, $z \in k^*$ and if σ denotes conjugation over k, $(y^{-1}y^{\sigma})^u = -1$. Hence u < s, $y^s \in k^*$, $x = y^{st} \in k^{st}$.

We are now ready to prove Proposition 2. For all ramified odd p let a_p denote one plus the exponent of p in the ramification degree, from Q to k, of some prime dividing p; for unramified odd p let $a_p = 0$, and let a_2 be one plus the exponent of 2 in the ramification degree, from Q to K, of some prime dividing 2. Let $r_p = p^{a_p}$. Then for all p and p prime to p, $\zeta_{prp} \notin k_p$, in fact $\zeta_{2r_2} \notin K_p$. Let $s_p = r_p$ for p odd and $s_2 = r_2^2$, and let $m = \Pi s_p$. Then for any $n = \Pi t_p$, $t_p = p^{c_p}$, letting $u_p = s_p t_p$,

$$k_{mn}^{*mn} \cap k^{*} = \left(\bigcap_{p} k_{mn}^{*^{u_{p}}}\right) \cap k^{*}$$

$$\subset \left(\bigcap_{p \neq 2} k_{mn}^{*^{u_{p}}} \cap k_{mn/u_{p}}^{*}\right) \cap (K_{mn}^{*^{u_{2}}} \cap K_{mn/u_{2}}) \cap k^{*}$$

$$\subset \left(\bigcap_{p \neq 2} k_{mn/u_{p}}^{*^{u_{p}}}\right) \cap (K_{mn/u_{2}}^{*^{u_{2}}}) \cap k^{*} \qquad \text{(by Lemma 1)}$$

$$\subset \left(\bigcap_{p \neq 2} k^{*^{t_{p}}}\right) \cap (K^{*^{r_{2}t_{2}}}) \cap k^{*} \qquad \text{(by Lemma 2)}$$

$$\subset \bigcap_{p \neq 2} (k^{*^{t_{p}}}) = k^{*^{n}} \qquad \text{(by Lemma 3)}.$$

PROPOSITION 3. If $E = 2D_{k/Q}$, then $\bigcap_r k_{E^r}^{*E^r} = \{1\}$.

PROOF. k contains no nontrivial roots of unity of order prime to E. Hence if $x \in k^*$, $x \ne 1$, $x \notin k^{*^s}$ for some $s = E^b$. The only odd primes in the m of Proposition 2 are ramified ones, hence $m \mid t$ for some $t = E^c$. Then $x \notin k_{st}^{*^{st}} \cap k^* \subset k^{*^{st/m}} \subset k^{*^s}$.

REFERENCES

- 1. H. Bass, A remark on an arithmetic theorem of Chevalley, Proc. Amer. Math. Soc. 16 (1965), 875-878. MR 32 #2396.
- 2. C. Chevalley, Deux théorèmes d'arithmétique, J. Math. Soc. Japan 3 (1951), 36-44. MR 13, 440.
 - 3. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 #5416.

BOSTON COLLEGE