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In [l] Bass stated the result given below as Proposition 1 and

derived some consequences. His proof of the proposition itself, how-

ever, contains a gap; Lemmas 2 and 3 are false as stated. The purpose

of this note is to fill the gap by proving the slightly stronger Proposi-

tion 2.

We retain the notation of [l]. In particular km = k(£m) where

fm = eui,m. The letters m, n, a, b, c, d, r, s, t, u, v will denote nonnega-

tive integers, p is a prime integer, and K = k(i).

Proposition 1. Given k and n, there is an m such that k^nr\k*Ek*n.

Proposition 2. Given k there is an m such that for alln, k*^ f~\k* Ek*" ■

Lemma 1. Suppose iEk if p = 2. Then if r=pa, kfr~\k*Ek**. (For
proof see p. 39 of [2].)

Lemma 2. Given p and k with iEk if p = 2, suppose r=p" and v are

such that tprEkv Then for all t = pe, kf'C\k*Ek* .

Proof. If e = 0 the result is trivial; assume c>0.

Case 1. £PEk or fP£&,,.

For any u=pd, d>0, any ruth power, zEk* of an element in k,

is a pth power of an element in k*. If not, Xr"—z would be irreducible

over k [3, p. 221], hence all its roots would lie in kv, which is normal

over k, hence £ruEkv, contrary to supposition.

Therefore, if x = yrt, xEk, yEk*, thenx=W, wEk*, and w~1yrtlp is

a pth root of 1 in kv, hence in k, and y"lpEk. Repeating the argument

if necessary we conclude, yTEk*, x = yTtEk*.

Case 2. fp£&, £PEkr.

If x£& is an rlth power of something in k„ then by Case 1, x is a

tth power of something in kpEkv. Taking norms from kp to k and

noting that [&„:&] is prime to / gives the result.

Lemma 3.  Let s = 2b be such that f2,£A.   Then for any t = 2c,

A*"n£*o*\
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Proof (Following [2]). Let x=yH, xEk*, yEK*. If yEk* there

is nothing to prove, so assume u = 2i such that yu(£k*, y2uEk*. Then

y" = iz, zEk* and if a denotes conjugation over k, iy~1y")u =■ — 1.

Hence u<s, y"Ek*, x = y"Ek* .

We are now ready to prove Proposition 2. For all ramified odd p

let ap denote one plus the exponent of p in the ramification degree,

from Q to k, of some prime dividing p; for unramified odd p let ap = 0,

and let a2 be one plus the exponent of 2 in the ramification degree,

from Q to K, of some prime dividing 2. Let rP = pa". Then for all p

and v prime to p, £prp(£kv, in fact £2riQ:Kv. Let sp = rp for p odd and

s2 = r\, and let m = Hsp. Then for any n = Htp, tp = p°", letting up = sptP,

kmn    C\ k     =  f    0   kmn   ) C\ k

c ( n kmn r\ kmniuT 1 n (pmn n pmn/U2) r\ &
\j,^2 /

C (  D   kmniuv j n iKmn/m) Pi * (by Lemma 1)

E[n   k    )n(P     )H* (by Lemma 2)
\ 3,7*2       /

C (1   ik*") = k*" (by Lemma 3).
p

Proposition 3. If E = 2Dm, then fW**^ {l}.

Proof, £ contains no nontrivial roots of unity of order prime to

E. Hence if xEk*, xj^l, xG&** for some s = Eb. The only odd primes

in the m of Proposition 2 are ramified ones, hence m \t for some t = E°.

Then xEkfnk*Ek*,tlmEk*'.
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