A RESULT OF BASS ON CYCLOTOMIC
EXTENSION FIELDS!

JOHN H. SMITH

In [1] Bass stated the result given below as Proposition 1 and
derived some consequences. His proof of the proposition itself, how-
ever, containsa gap; Lemmas 2 and 3 are false as stated. The purpose
of this note is to fill the gap by proving the slightly stronger Proposi-
tion 2.

We retain the notation of [1]. In particular k,=k({») where
Cm=e2im The letters m, n, a, b, ¢, d, 7, s, ¢, #, v will denote nonnega-
tive integers, p is a prime integer, and K =k(7).

PROPOSITION 1. Given k and n, there is an m such that EX"ME*CE*".
PROPOSITION 2. Given k there is an m such that for all n, kY, NE*CE*".

LEMMA 1. Suppose i€k if p=2. Then if r=p, E¥ \k*CE*. (For
proof see p. 39 of [2].)

LEMMA 2. Given p and k with 1Sk if p=2, suppose r=p° and v are
such that ¢p@ ky. Then for all t=p°, B "NE*CE¥.

ProoOF. If ¢ =0 the result is trivial; assume ¢>0.

Case 1. {,Ek or {,Ek,.

For any u=p4, d>0, any ruth power, z&k* of an element in kY
is a pth power of an element in k*. If not, X™*—z would be irreducible
over k [3, p. 221], hence all its roots would lie in &,, which is normal
over k, hence {,.Ek,, contrary to supposition.

Therefore, if x =y, x €k, yEEk), then x =w?, wCk*, and w1y"/» is
a pth root of 1 in k,, hence in k, and y"*/?&k. Repeating the argument
if necessary we conclude, y*Ek*, x =yt Ch¥,

Case 2. t,6Ek, {,EE,.

If xEk is an rtth power of something in &, then by Case 1, x is a
tth power of something in k,Ck,. Taking norms from %, to £ and
noting that [k,:%] is prime to ¢ gives the result.

LEMMA 3. Let s=2% be such that {:€&EK. Then for any t=2¢,
K¥'NE*Ck*.
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PRrooF (FOLLOWING [2]). Let x =y*, x C€k*, yEK*. If yEk* there
is nothing to prove, so assume % =24 such that y*ck*, y?*&k*. Then
yv=1z, 2Ek* and if ¢ denotes conjugation over k, (y~ly°)*= —1.
Hence u<s, ys€k*, x=y"€k*‘.

We are now ready to prove Proposition 2. For all ramified odd
let a, denote one plus the exponent of p in the ramification degree,
from Q to &, of some prime dividing p; for unramified odd p let ¢, =0,
and let a; be one plus the exponent of 2 in the ramification degree,
from Q to K, of some prime dividing 2. Let r,=p°. Then for all p
and v prime to p, {pr,& ks, in fact o, K,. Let s,=r, for p odd and
sy=r3, and let m =IIs,. Then for any n =1I1t,, t,=p°, letting u,=s,tp,
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PROPOSITION 3. If E=2Dyq, then N, kg™ = {1}.

PROOF. k contains no nontrivial roots of unity of order prime to
E. Hence if x€k*, x#1, xEk* for some s = E?. The only odd primes
in the m of Proposition 2 are ramified ones, hence m | for some ¢t = Ee.
Then x kX" NE*CE*"CE*.
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