LARGE DEVIATION PROBABILITIES FOR POSITIVE RANDOM VARIABLES

G. R. ANDERSEN

- 1. Introduction. Let X_1, X_2, \cdots be a sequence of positive, independent and identically distributed random variables (r.v.'s) with distribution function (d.f.) F. Set $S_n = \sum_{K=1}^n X_K$. Following Heyde [2], we call $P(S_n > t_n)$ a large deviation probability when $t_n \to +\infty$ as $n \to +\infty$.
- 2. Results. The following theorem sharpens Heyde's result at the expense of a restriction to positive r.v.'s with slowly varying tail distributions.

THEOREM. Let $\{t_n\}$ be a sequence of positive numbers with $t_n \to +\infty$ in such a way that $n(1-F(t_n))\to 0$ as $n\to +\infty$. If 1-F is a slowly varying function, then

$$(1) P(S_n > t_n) \sim nP(X_1 > t_n) \sim P(\max_{i \le n} X_i > t_n),$$

as $n \rightarrow + \infty$.

The right-hand side of (1) is a consequence of the following

LEMMA. If $n(1-F(t_n)) \rightarrow 0$ as $n \rightarrow +\infty$, then

(2)
$$nP(X_1 > t_n) \sim P(\max_{i \le n} X_i > t_n), \quad (n \to + \infty).$$

Heyde, [2], obtains this result from Bonferroni's inequalities; it is also a simple consequence of the following inequality:

$$n(1-F(t_n)) \ge 1-F^n(t_n) \ge 1-e^{-n(1-F(t_n))}.$$

PROOF OF THE THEOREM. Let $M_n = \max_{i \le n} X_i$. It is easy to see that

(3)
$$P(S_n > t_n) = P(M_n > t_n) + P(M_n \le t_n, S_n > t_n).$$

Hence, using only the hypothesis of the lemma and (2), we find that

(4)
$$\liminf \{P(S_n > t_n)/nP(X_1 > t_n)\} \ge 1.$$

In order to prove the other half of (1) we let S_{nn} be the sum of the truncates of X_1, X_2, \dots, X_n at the point t_n . Then, from equation (3),

Received by the editors March 18, 1969.

(5)
$$P(S_n > t_n) \leq P(M_n > t_n) + P(S_{nn} > t_n).$$

Applying Markov's inequality to $P(S_{nn} > t_n)$ we find that

(6)
$$P(S_{nn} > t_n) / \{nP(X_1 > t_n)\} \le \int_0^{t_n} x dF(x) / \{t_n P(X_1 > t_n)\}.$$

Since 1-F is a slowly varying function, we may use Karamata's theorem [1, p. 273], to obtain the following limit.

$$\int_0^{t_n} (1 - F(y)) dy / \{t_n P(X_1 > t_n)\} \to 1,$$

as $n \rightarrow +\infty$. Then, after integrating by parts to obtain

$$\int_0^{t_n} y dF(y) = -t_n P(X_1 > t_n) + \int_0^{t_n} (1 - F(y)) dy,$$

we see that the right-hand side of (6) approaches zero as $n \to +\infty$. Hence, $P(S_{nn} > t_n) = o(nP(X_1 > t_n))$, $(n \to +\infty)$. But then the lemma and inequality (5) imply that

(7)
$$\lim \sup (P(S_n > t_n) / \{ nP(X_1 > t_n) \}) \leq 1.$$

REMARK 1. The proof of the theorem goes through if $t_n \to +\infty$ independently of n. That is, if 1-F is slowly varying then $P(S_n > t) \sim nP(X_1 > t) \sim P(\max_{i \le n} X_i > t)$ as $t \to +\infty$ for each n. This known result is given in [1, p. 272].

REMARK 2. The converse of the theorem is not true; it is easy to show that (1) holds for the one-sided stable law with parameter 1/2: $F(x) = 2(1 - \Phi(1/\sqrt{x}))$, x > 0, where Φ is the standard normal d.f., provided that $n^2 = o(t_n)$ $(n \rightarrow +\infty)$. However, 1 - F is a regularly varying function with exponent -1/2.

REMARK 3. If 1-F is regularly varying with exponent $-\gamma$, $0 < \gamma < 1$, then the above argument yields

$$1 \leq \liminf_{n} \left\{ P(S_n > t_n) / n P(X_1 > t_n) \right\}$$

$$\leq \lim_{n} \sup_{n} \left\{ P(S_n > t_n) / n P(X_1 > t_n) \right\}$$

$$\leq (1 - \gamma)^{-1},$$

if $nP(X_1 > t_n) \rightarrow 0$, as $n \rightarrow +\infty$.

REFERENCES

- 1. W. Feller, An introduction to probability theory and its applications. Vol. II, Wiley, New York, 1966. MR $35\,$ #1048.
- 2. C. C. Heyde, On large deviation problems for sums of random variables which are not attracted to the normal law, Ann. Math. Statist. 38 (1967), 1575-1578. MR 36 #4616.

BELLCOMM, INC.