LARGE DEVIATION PROBABILITIES FOR POSITIVE
RANDOM VARIABLES

G. R. ANDERSEN

1. Introduction. Let X;, X,, - - - be a sequence of positive, inde-
pendent and identically distributed random variables (r.v.’s) with
distribution function (d.f.) F. Set S,= »_%., Xk. Following Heyde
[2], we call P(S.>t,) a large deviation probability when f,—+ «
as n—-+ o,

2. Results. The following theorem sharpens Heyde's result at the
expense of a restriction to positive r.v.’s with slowly varying tail
distributions.

THEOREM. Let {t,} be a sequence of positive numbers with t,——+ »
in such a way that n(1—F(,))—0 as n—+ . If 1—F is a slowly
varying function, then

(1) P(S, > t,) ~nP(X; > t,) ~ P(max X; > 1),

1S
as n—-+ o,
The right-hand side of (1) is a consequence of the following
LEmMA. If n(1—F(¢,))—0 as n—+ «, then

) nP(X, > t,) ~ P(max X; > t,), (n— + »).
tsSn

Heyde, [2], obtains this result from Bonferroni's inequalities; it
is also a simple consequence of the following inequality:

n(1l — F(ta)) 2 1 — Fr(t,) 2 1 — ¢ nG=Fim),

PROOF OF THE THEOREM. Let M, =max;s, X;. [t is easy to see that

3) P(Sa>t,) = P(M, > t,) + P(Mn < tay Sn > ta).
Hence, using only the hypothesis of the lemma and (2), we find that
(4) lim inf{ P(Ss > t.)/nP(X1> )} 2 1.

In order to prove the other half of (1) we let S.. be the sum of the
truncates of X;, X, - - -, X, at the point {,. Then, from equation (3),
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(%) P(Sa > ta) £ P(My > t) + P(Snn > ).

Applying Markov's inequality to P(S..>t.) we find that
tn

(6)  P(San > 1a) / {nP(X1> t)} < f adF (x) / {t.P(X1> t.)}.
0

Since 1—F is a slowly varying function, we may use Karamata's
theorem [1, p. 273], to obtain the following limit.

ta
[ "o - ronayineea > w) -1,
0
as n—-+ . Then, after integrating by parts to obtain

[ "3ar6) = = npex > 1 + [ "a - rona,

we see that the right-hand side of (6) approaches zero as n—+ «.
Hence, P(S,.>t,) =0(nP(X1>1t,)), (n—-+ ). But then the lemma
and inequality (5) imply that

@) lim sup(P(S, > t,.)/{nP(Xl > t,.)}) =1

REMARK 1. The proof of the theorem goes through if ¢,—+ =
independently of n. That is, if 1—F s slowly varying then P(S,>1t)
~nP(X>t)~P(maxig, X;>t) as t—-+ = for each n. This known
result is given in [1, p. 272].

REMARK 2. The converse of the theorem is not true; it is easy to
show that (1) holds for the one-sided stable law with parameter
1/2: F(x)=2(1—-®(1/+/x)), x>0, where ® is the standard normal
d.f., provided that n2=0(t,) (r—+ «). However, 1 — F is a regularly
varying function with exponent —1/2.

REMARK 3. If 1 —F is regularly varying with exponent —vy, 0<%y
<1, then the above argument yields

1 < lim inf{ P(S, > £)/nP(X1 > t,)}
n
< lim sup{ P(S. > t.)/nP(X1 > 1)}

= (1 - 7)-1,

if nP(X;>1,)—0, as n—-+ .
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