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1. Introduction. Let Ai, A2, • • • be a sequence of positive, inde-

pendent and identically distributed random variables (r.v.'s) with

distribution function (d.f.) F. Set Sn= Ejt-i Xk- Following Heyde

[2], we call P(Sn>tn) a large deviation probability when tn—>4~ °°

as n—*+ 00.

2. Results. The following theorem sharpens Heyde's result at the

expense of a restriction to positive r.v.'s with slowly varying tail

distributions.

Theorem. Let {tn} be a sequence of positive numbers with tn—>+ °°

in such a way that n(l — F(tn))-^0 as n—»4-w. // 1 — F is a slowly

varying function, then

(1) P(Sn > tn) ~ nP(Xi > tn) ~ P(max A, > Q,

as n—*A- 00.

The right-hand side of (1) is a consequence of the following

Lemma. If n(l — F(tn))-*0 as «—>-)- °°, then

(2) nP(Xi > t„) ~ P(max A,- > t„),        (n -+ + °o).

Heyde, [2], obtains this result from Bonferroni's inequalities; it

is also a simple consequence of the following inequality:

»(1 - F(t„)) ^ 1 - F"(/„) ^ 1 - e-"«-F('»".

Proof of the theorem. Let Mn = max,sn A,-. It is easy to see that

(3) P(Sn  >   tn)   =   P(Mn  >   ln)   +  P(Mn  ^   t„, Sn  >   Q.

Hence, using only the hypothesis of the lemma and (2), we find that

(4) lim inf{P(5„ > tn)/nP(Xi > /„)} ^ 1.
n

In order to prove the other half of (1) we let Snn be the sum of the

truncates of Ai, A2, ■ • • , A„ at the point /„. Then, from equation (3),
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(5) P(Sn >  tn)   =  P(Mn >  t„) + P(Snn >  Q.

Applying Markov's inequality to P(Snn>tn) we find that

(6) P(Snn >  tn)   / [nP(Xi >tn)}   = J   \dF(x)    / {tnP(Xi >  ln)}.

Since 1 —P is a slowly varying function, we may use Karamata's

theorem [l, p. 273], to obtain the following limit.

f '"(1 - F(y))dy/{tnP(Xi > U)} -> 1,
J 0

as n—>4- oo. Then, after integrating by parts to obtain

f "ydF(y) = - tnP(Xi >tn)+ f "(1 - F(y))dy,
J o J 0

we see that the right-hand side of (6) approaches zero as «—>4- °° •

Hence, P(Snn>tn) =o(nP(Xi>tn)), (n—>+oo). But then the lemma

and inequality (5) imply that

(7) lim sup(P(5„ > tn)/{nP(Xi >/„)}) ^ 1.
n

Remark 1. The proof of the theorem goes through if t„—>+ oo

independently of n. That is, if 1 — F is slowly varying then P(Sn>t)

~nP(Xi>t)~P(maxis„Xi>t) as t—>4-°° for each n. This known

result is given in [l, p. 272].

Remark 2. The converse of the theorem is not true; it is easy to

show that (1) holds for the one-sided stable law with parameter

1/2: F(x) =2(1— <&(l/\/x)), x>0, where $ is the standard normal

d.f., provided that ra2 = o(t„) (n—>-\- oo). However, 1 — P is a regularly

varying function with exponent —1/2.

Remark 3. If 1 —P is regularly varying with exponent —7, 0<7

<1, then the above argument yields

1 g lim inf{P(Sn > k)/nP(Xi > tn)}
n

g lim sup{P(5„ > ln)/nP(Xi > tn)}
n

g (l - t)-1,

if nP(Xi>tn)->0, as n->+ 00.
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