RESULTANTS OF CYCLOTOMIC POLYNOMIALS
TOM M. APOSTOL

1. Introduction. The cyclotomic polynomial F,(x) of order n=1 is
the primary polynomial whose roots are the primitive nth roots of
unity,

(1.1) Fo(x) = JI' (& — eri*in),

k=1
where the ’ indicates that the index k runs through integers relatively
prime to . The degree of F,(x) is ¢(n), Euler’s totient.

This paper determines the resultant p(Fn, F.) of any two cyclo-
tomic polynomials F, and F,. Explicit formulas are given which
show that if m #n the resultant is either 1, —2, or a prime power. For
the case m>n>1 the results agree with a formula derived by
Diederichsen [3, Hilfssatz 2] in a paper on group representations (see
Theorem 4 below). Our proof is different from and somewhat simpler
than that of Diederichsen; it is based on the following lemma on
decompositions of reduced residue systems which the author has
recently used to relate Gauss sums and primitive characters [1,
Lemma 6].

LeMMA. Let Sy denote a reduced residue system modulo k, and let d
be a divisor of k. Then S is the union of ¢(k)/¢(d) disjoint sets, each of
which is a reduced residue system modulo d.

We also make use of the following well-known formulas for cyclo-
tomic polynomials [2, p. 31], [4, Chapter 8]:

1.2) an — 1 = [] Fa()

din
and
F,(1) =0 ifn=1,
(1.3) =p ifn=2p° pprime, =1,
=1 otherwise.

Property (1.3) is an easy consequence of (1.2) and the relation
Fpa(x) = Fy(y), y=%*"", p prime, a>1 (see [4, p. 67]). We also use
the fact that each F,(x) has integer coefficients [4, p. 61].
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2. Properties of resultants. Given two polynomials 4 and B, say

A(x) = X @ and B(x) = D bk,
k=0

k=0

their resultant p(4, B) is defined to be the determinant

Qn Qun-1 Qup-2 " " Q1 Qo
an dp—1 * Q2 @1 Qo
! W TOWS
an Qu—1 " A1 QA
p(4, B) = ,
bm bm—l bm—z ctt bl bo
bm bm—l L bz bl bo n TOWS
bm bm—l ctt bl bO

the remaining entries being equal to zero. This formula shows that
p(A4, B) is a polynomial in the a; and b; with integer coefficients. In
particular, if all the a; and b; are integers then p(4, B) is also an
integer. Hence p(F,, Fn) is an integer for any two cyclotomic poly-
nomials.

If A and B are expressed in terms of their zeros, say

A@ = an [T (s — =), B = bn 11 (¢ — 2,
k=1 j=1

then the resultant can also be expressed as a product,
2.1 p(4, B) = anbm [T I (5 — ).

k=1 j=1

A proof of (2.1) is given in [5]. This formula implies the multiplica-
tive property

(2.2) p(4, BC) = p(4, B)p(4, C)
for any polynomials 4, B, C; the symmetry property
(2.3) p(4, B) = (—=1)™p(B, 4);

and the factorization formula

@.4) o(4, B) = b, ,ﬁ, AQy).
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Two polynomials 4 and B have a root in common if and only if
p(4, B)=0. In particular, p(Fn, F,) =0if and only if m =n.

3. The resultant of F, and F,. Applying equation (2.1) to the
cyclotomic polynomials Fi and F., where m>1, we find

3.1 p(Fy, F) = JI' (1 — eiim) = Fo(1).
k==l
Using (1.3) we obtain
THEOREM 1. If m>1 we have
p(FlyFm)=p if m = p% p prime, a1,
=1 otherwise.

It should be noted that p(Fn, Fi) =(—1)*™p(F, F,), so p(F, F)
=—p(F, F)=—2 and p(Fn, F1)=p(F, Fn) if m>1.

4. A product formula for p(F.,, F,) when m>n>1. The restriction
m>n>1 is not serious because

P(Fm, Fn) = (_1)¢(m)¢(n)P(Fm Fn) = P(Fm Fm)-
We use the lemma of §1 to prove

THEOREM 2. If m>n>1 we have

(4.1) p(Fmy Fp) = [] prinidrsmiston

d,p

where the product is extended over those divisors d of n and those primes
p such that m/(m, d) = p® for some a=1.

Proor. Using (1.2) and the multiplicative property (2.2) we obtain
4.2) p(Fm, 2 — 1) = I p(Fm, Fo).

d|n

Since m>n>1 each factor in (4.2) is nonzero and we can apply the
Mébius inversion formula to obtain

4.3) o(Fm, F,) = H p(Fy 28 — 1)pn1D),

din
Using the symmetry property (2.3) and equation (2.4) we find
o(Fmy 2% — 1) = (—=1)%™p(a? — 1, Fp) = J]' (e2rim — 1).
k=1

In the exponential we write
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kd  kd/s m d
—_— = Where 0= (m, d), (—6~) —8—) = 1.

m m/8

By the lemma, as k runs through a reduced residue system modulo m
the product kd/d runs through a reduced residue system modulo /8
with each residue appearing exactly ¢(m)/¢(m/5) times. Therefore

m/é ¢(m) /¢ (m/[8)
{II' (e'zﬂr/(mlﬁ) —_ 1)}
r=1

= Fpys(1)3 ) 161t

P(Fm, ¥t — 1)

Using (1.3) to evaluate Fn/s(1) we find
p(Fmy 2t — 1) = po(miemie)  if /5 = p° for some prime p,
=1 otherwise.
Substituting this in (4.3) we obtain Theorem 2.

5. Evaluation of p(F., F,) for m>n>1. We consider two cases,
(m, n)=1 and (m, n)>1. If (m, n)=1 then (m, d)=1 for every
divisor d of #, so the product in Theorem 2 is empty unless m is a
prime power. If m =p® the product in Theorem 2 becomes

H prinld) = 1

din
since D _ain u(n/d) =0 for n>1. In other words, we have proved:
THEOREM 3. If m>n>1 and (m, n) =1, then p(Fn, F,) =1.

Next we consider the case in which m and » are not relatively
prime. In this case we obtain

THEOREM 4. If m>n>1 and (m, n)>1, then
p(Fmy Fp) = p* if m/n is a power of a prime p,
=1 otherwise.

Proor. We replace d by n/d in the product (4.1) and rewrite it in
the form

3.1 p(Fp, F,) = J] pr@rsmiso
d,p

where the product is extended over those divisors d of # and those
primes p such that m/(m, n/d) = p®. Because of the Mébius function
we need consider only square-free divisors d.

We write m =km’, n=Fkn’, where k= (m, n) and (m’, n’)=1. Then
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m Em! km'n’ m'd m'd

(m,n/d) - (km', kn'/d) - kn'(m'd, n')/d - (m'd,n") )

where 8= (m'd, n’). Since (m’, n’)=1 we have (8, m')=1 so Bld.
Therefore m’d/d is a multiple of m’. For this to be a prime power,
both m’ and d/8 must be powers of the same prime.

If m' is not a prime power the product in (5.1) is empty and
p(Fn, F,)=1. Assume, then, that m’ is a prime power, say

m = po.

We seek those divisors d of # for which d/8 is a power of the same
prime, say d/8 =p5. This implies d =6p8, 3=0.

Now n=Fkn’ and d|n so §p8| kn’, hence p#| kn'. But (p, n') =1 since
(m',n')=1,s0 p“] k. Therefore we can write k =p7k’, where (p, k') =1.
We now have

m m'd
—_— = Pa+ﬁ.
(m,n/d) 8

n==Fkn' =pkn', m=rkm = ptk,

We also have d =8p?. Since d is square-free this requires3=0or 8=1,
so each d has the form & or 8p, where (p, 8) =1. Now d|n so d| pk'n’.
If we let d’ range through all the square-free divisors of k'n’ we see
that the possible values of d are all the divisors d’ (these correspond
to 8=0) plus all products of the form pd’ (these correspond to 8=1).
The contribution to the product in (5.1) from each divisor d’ is p
raised to the power u(d’)p(m)/¢(p%). The contribution from each
divisor pd’ is p raised to the power —u(d’)p(m)/p(pe*tt). But we have

om) _ S(pTGE) _ pro(pIoH)
600 () )

and, similarly,

= p (%)

o(m)/d(p=+) = pr¢(k).
Therefore
&(m)/$(p*) — d(m)/d(p=t") = (p7 — pNé(K) = (p7)é(k') = (k).

Therefore the contribution to the product from each pair of divisors
d=d’ and d=pd’ is p*@¢®_ We do not alter the product if we also
include as factors the same power of p taken over the nonsquare-free
divisors of k’n’. Therefore we obtain

p(Fmy Fo) = [ prene® = { Pwn}o’

a’|k’n’
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where
t= > wd)=1 ifkn =1,

d’'|k'n’
=0 if B'n’ > 1.

This shows that p(Fn, F.) =1 unless ¥z’ =1, in which case p(Fm, F,)
=p¢®, But k'n’=1 implies &'=n'=1 and this implies n=k=p7,
m=np* Therefore the resultant is equal to 1 unless m/n=p°, in
which case p(Fn, Fn) =p*"™. This completes the proof of Theorem 4.
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