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1. Introduction. The cyclotomic polynomial Fn(x) of order raS: 1 is

the primary polynomial whose roots are the primitive rath roots of

unity,

(1.1) Fn(x) = fl' (x - e*"*'*),

where the ' indicates that the index k runs through integers relatively

prime to n. The degree of Fn(x) is <f>(n), Euler's totient.

This paper determines the resultant p{Fm, Fn) of any two cyclo-

tomic polynomials Fm and F„. Explicit formulas are given which

show that if mp^n the resultant is either 1, —2, or a prime power. For

the case wz>ra>l the results agree with a formula derived by

Diederichsen [3, Hilfssatz 2] in a paper on group representations (see

Theorem 4 below). Our proof is different from and somewhat simpler

than that of Diederichsen; it is based on the following lemma on

decompositions of reduced residue systems which the author has

recently used to relate Gauss sums and primitive characters [l,

Lemma 6].

Lemma. Let Sk denote a reduced residue system modulo k, and let d

be a divisor of k. Then 5* is the union of 4>(k)/4>{d) disjoint sets, each of

which is a reduced residue system modulo d.

We also make use of the following well-known formulas for cyclo-

tomic polynomials [2, p. 31 ], [4, Chapter 8]:

(i.2) X" -1 = n p*(*)

and

FJ1) = 0 if n = 1,

(1.3) = p if ra = p",    p prime,    a ^ 1,

= 1 otherwise.

Property (1.3) is an easy consequence of (1.2) and the relation

Fp.(x) = Fp(y), y = xv"~\ p prime, a>l (see [4, p. 67]). We also use

the fact that each Fn(x) has integer coefficients [4, p. 61 ].
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2. Properties of resultants. Given two polynomials A and B, say

n m

A(x) = ^akxk    and    B{x) = ^ bkXk,
t=0 fc=0

their resultant p(A, B) is denned to be the determinant

O-n       O-n-l       0n-2   "   '   '  «1       «0

#n On-1   •   •   •  02       Ol      Oo
• w rows

bm    bm-i    bm-2 • ■ • bi    bo

bm       bm-i • ■ ■ bz    bi   b0 n rows

bm    bm~i ■ ■ ■ bi    bo

the remaining entries being equal to zero. This formula shows that

p(A, B) is a polynomial in the a, and h, with integer coefficients. In

particular, if all the a< and bj are integers then p(A, B) is also an

integer. Hence p(Fn, Fm) is an integer for any two cyclotomic poly-

nomials.

If A and B are expressed in terms of their zeros, say

n m

A(x) = an IX 0 — xk),        B{x) = 6m II (* — ?>)>

then the resultant can also be expressed as a product,

n      m

(2.D pu, s) = <»r£iin (**-*)■
t-i y—i

A proof of (2.1) is given in [5]. This formula implies the multiplica-

tive property

(2.2) P(A,BC)=P{A,B)p(A,C)

for any polynomials A, B, C; the symmetry property

(2.3) p{A,B) = (-l)-»p(S, A);

and the factorization formula

(2.4) P(A,B) =blflA(yj).
y-i
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Two polynomials A and B have a root in common if and only if

p(A,B) =0. In particular, p(Fm, Fn) =0if and only if m = n.

3. The resultant of Fx and Fm. Applying equation (2.1) to the

cyclotomic polynomials Fi and Fm, where m>\, we find

m

(3.1) p{F1, Fm) = II' (1 - e2"'*"") = FM)-

Using (1.3) we obtain

Theorem l.Ifm>lwehave

p(Fi, Fm) = p       ifm = p",   p prime,    a ^ 1,

= 1        otherwise.

It should be noted that p(Fm, F{) = (-l)*^p(Fu Fm), so p(F2, Fi)

= -p(Fu F,)=-2 and p(Fm, Fi) =p(Fu F„) if m>l.

4. A product formula for p(Fm, Fn) when m>n> 1. The restriction

m>n>\ is not serious because

P(Fm, Fn) = (-l)*w*Wp(F., Fm) = P(F„, Fro).

We use the lemma of §1 to prove

Theorem 2. If m>n>\ we have

(4.1) p(fm> F„) = II p^'^^i*^,
d,p

where the product is extended over those divisors d of n and those primes

p such that m/(m, d) =pa for some a'Sz 1.

Proof. Using (1.2) and the multiplicative property (2.2) we obtain

(4.2) p(Fm,x»-l) = Jlp(Fm,Fd),

Since »ra>ra>l each factor in (4.2) is nonzero and we can apply the

Mobius inversion formula to obtain

(4.3) p(Fm, Fn) = II P(Fm, x* - 1)**«>.

Using the symmetry property (2.3) and equation (2.4) we find

m

p(Fm, x* - 1) = (-l)rf*(»)p(^ - 1, Fm) = II' (e2"'M/m - 1).
it-i

In the exponential we write
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kd     kd/S (m     d\
— = —— ,    where   8= (m,d),       I —, —) = 1.
m       m/8 \8      8 /

By the lemma, as k runs through a reduced residue system modulo m

the product kd/S runs through a reduced residue system modulo m/8

with each residue appearing exactly <p(m)/(p(m/8) times. Therefore

/ mJS \   <f,(m)/<f>(.ml8)

p(Fm, x* - 1) - J IT (e2">/(""8) - 1)|

= Fm/a(l)* (»>/* <»/•>.

Using (1.3) to evaluate .Fm/a(l) we find

p(Fm, xd — 1) = £*(m)/*(m/s)        if ot/5 = £a for some prime p,

= 1        otherwise.

Substituting this in (4.3) we obtain Theorem 2.

5. Evaluation of p(Fm, Fn) for m>n>\. We consider two cases,

(m, n) = 1 and (m, n)>\. If (w, w) = 1 then (m, d) = l for every

divisor d of w, so the product in Theorem 2 is empty unless m is a

prime power. If »w =£>a the product in Theorem 2 becomes

n ^(n/<i) = i
din

since ^<ji„ p(n/d) =0 for w> 1. In other words, we have proved:

Theorem 3. If m>n>l and (m, n) = 1, /Aew p(Fm, Fn) = 1.

Next we consider the case in which w and w are not relatively

prime. In this case we obtain

Theorem 4. If m>n>\ and (m, n)>\, then

p(Fm, Fn) = ^*(n)        ifm/n is a power of a prime p,

= 1 otherwise.

Proof. We replace d by n/d in the product (4.1) and rewrite it in

the form

(5.1) p(Fm, Fn) = n ^w>*<"»♦<»■■>
d,p

where the product is extended over those divisors d of n and those

primes p such that m/{m, n/d) =p". Because of the Mobius function

we need consider only square-free divisors d.

We write m = km', n = kn', where k = (m, n) and (mr, »') = !. Then
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m km' km'n' m'd m'd

(m, n/d)      (km', kn'/d)     kn'(m'd, n')/d     (m'd, n')       8

where 8 = (m'd, n'). Since (m', n') = l we have (5, m') = l so 8\d.

Therefore m'd/8 is a multiple of m'. For this to be a prime power,

both m' and d/8 must be powers of the same prime.

If m' is not a prime power the product in (5.1) is empty and

p(Fm, Fn) = 1. Assume, then, that m' is a prime power, say

m' = pa.

We seek those divisors d of ra for which d/8 is a power of the same

prime, say d/8=pe. This implies d = 8ps, j3 — 0.

Now ra = kn' and d| ra so 5/>"| &ra', hence pB\ kn'. But (/>, «') = 1 since

(m', ra') = 1, sop0\ k. Therefore we can write k = p~>k', where (p, k') = 1.

We now have

m m'd
n = kn' = pik'ri,       m = km' = p^k',       -=-= pa+l>.

(m, n/d)        8

We also have d = 8pe. Since d is square-free this requires 0 = 0 or j8 = l,

so each rf has the form 5 or 5£, where (/>, 5) = 1. Now d\ n so d| pyk'n'.

If we let d' range through all the square-free divisors of k'n' we see

that the possible values of d are all the divisors d' (these correspond

to (8 = 0) plus all products of the form pd' (these correspond to j3 = 1).

The contribution to the product in (5.1) from each divisor d' is p

raised to the power p.(d')(p(m)/4>(pa). The contribution from each

divisor pd' is p raised to the power —n(d')(j>(m)/<f)(pa+l). But we have

<j,(m)      <t>(p°+y)4>(k')     pH(P*W)
- = - = - = i>"i<b(k )
<kp°)       <s>(pa) <t>(p*)

and, similarly,

4>(m)/4>(pa+1) = p*-W).

Therefore

<Km)/4>(p°) - <j,(m)/<t>(p«+l) = (py - p->-l)4>(k') = *f>W) = *(*).

Therefore the contribution to the product from each pair of divisors

d = d' and d = pd' is />eW'>*(*>. We do not alter the product if we also

include as factors the same power of p taken over the nonsquare-free

divisors of k'n'. Therefore we obtain

p(Fm, Fa) =    If   />"(d'>*(t' = {?*<»}',
d'\k>n'
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where

I =    Z   m(/) = 1       if k'n' = 1,
d'lk'n'

= 0       if k'n' > 1.

This shows that p(Fm, F„) = 1 unless k'n' = 1, in which case p(Fm, F„)

= p*Ci). But k'n' = l implies k' = n'=l and this implies n = k = py,

m = npa. Therefore the resultant is equal to 1 unless m/n = pa, in

which case p(Fm, Fn) =p*'"). This completes the proof of Theorem 4.
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