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Abstract. In this paper we consider algebras satisfying the

identity (I) x(xy)-\-(yx)x = 2(xy)x and show that there are no nodal

algebras of this type over any field F of characteristic zero. The

proof is obtained by first showing that if x is an element of a finite-

dimensional algebra satisfying (I) over a field of characteristic zero

then the operator L(x) —R(x) is nilpotent.

A finite-dimensional power-associative algebra A with identity 1

over a field F is called a nodal algebra [7] if every x in A is of the form

x=al-\-n where a is in F and n is nilpotent, and the set N of nil-

potent elements of A does not form a subalgebra of A. Albert [l]

has proved that there are no commutative nodal algebras over any

field F of characteristic zero by showing that N forms a subalgebra.

There do exist, however, examples of nodal algebras over fields of

characteristic zero [2].

Algebras satisfying (I) have been studied by Kosier [S], Witthoft

[8] and the author [6]. It should be noted that in linearized form (I)

reduces to

(1) x(zy) + z(xy) + (yx)z + (yz)x = 2(xy)z + 2(zy)x

and in operator form (I) is just

(2) L(x)2 + R(x)2 = 2L(x)R(x)

or

(3) L(x)(L(x) - R(x)) = (7(a0 - R(x))R(x)

where  L(x)(R(x))   is  the operator which  acts as  follows:  yL(x)

= xy(yR(x) =yx).

In a commutative algebra L(x)—R(x) =0. For algebras satisfying

(7) we have the following.

Theorem 1. Let A be a finite-dimensional algebra satisfying (I)

over a field F of characteristic zero. Then for any element x the operator

L(x)—R(x) is nilpotent.

Received by the editors June 27, 1969 and, in revised form, September 15, 1969.

A MS Subject Classifications. Primary 1720.

Key Words and Phrases. Nodal algebra, power-associative, characteristic zero,

nilpotent, finite-dimensional.

1 The author is indebted to the referee for his suggestions in shortening the proof
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Proof. It is known [4, p. 43] that a transformation T on a finite-

dimensional vector space V over a field of characteristic zero is nil-

potent if all of its powers have trace zero; i.e., tr Tn = 0 (n = \, 2, ■ • ■).

We show that T — (L(x) — R(x))2 is nilpotent. Consider

tr[(L(x)-R(x))m] for m^2. Clearly,

ti[(L(x) - R(x))m] = tr[L(x)(L(x) - R(x))(L(x) - R(x))m~2]

- ti[R(x)(L(x) - R(x)y~2(L(x) - R(x))]

now, by (3), L(x)(L(x)—R(x)) = (L(x)—R(x))R(x) and by the com-

mutativity of the trace, tr[R(x)(L(x)-R(x))m-2(L(x)-R(x))] =

tr[(£(*)-R(x))R(x)(L(x)-R(x)m~2)]. Therefore,

tr[(L(x) - R(x))m] = tr[(£(*) - R(x))R(x) (L(x) - R(x))m~2]

- tr[(L(x) - R(x))R(x)(L(x) - R(x))m~2]

= 0.

Therefore, (L(x)—R(x))2 is nilpotent.

Corollary. For A as above, trL(x) = tri?(x) for any element x.

It should be noted that if 4 is flexible then Theorem 1 is trivial

since then (2) is just (L(x)—R(x))2 = 0.

Theorem 2. There do not exist any nodal algebras satisfying x(xy)

+ (yx)x = 2 (xy)x over any field F of characteristic zero.

Proof. Gerstenhaber [3, p. 29] has shown that in a commutative

power-associative algebra over a field F of characteristic zero, the

assumption that an element n is nilpotent implies that R(n) is nil-

potent. If an algebra 4 is not commutative this result can be applied

to 4+ where 4+ is the same vector space as 4 but multiplication in

4+ is given by: x-y = \(xy-\-yx), xy the multiplication in 4. Thus, if

a is nilpotent in 4 then R(a)+ = %(R(a)+L(a)) is nilpotent and

trF(a)+trL(a)=0.

Now let 4 be a finite-dimensional power-associative algebra

satisfying (I) over a field Fof characteristic zero, every element a of

4 being of the form a = al-\-n with n nilpotent. We show that the set

N of nilpotent elements of 4 forms a subalgebra. As in [6, Theorem 1 ]

write (1) in terms of operators to get,

(4)   R(y)L(x) + R(xy) + L(yx) + L(y)R(x) = 2L(xy) + 2R(y)R(x).
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If we interchange x and y in (4) and subtract the result from (4) we

have: [L(y), R(x)]+[R(y), L(x)]+R([x, y])+L([y, x]) = 2L([x, y])

+ 2[R(y), R(x)] (as usual [A, B] denotes AB—BA) which gives

rise to:

(5) tr(R[*, y]) + tr L([y, x\) = 2trL([x, y]).

Let [x, y] = — [y, x]=al-\-n with a in F and n nilpotent. By [3]

tr L(«) + tr R(n)=0. By the corollary tr L(w)=tr R(n). Therefore

tr 7(w)=tr R(n)=0. Thus (5) reduces to: tr R(al)-tr L(al)

= 2 tr L(al) or 2 a dim .4=0. Therefore a = 0. In particular, if x and

y are in N then [x, y] is in N. But by [l] xy-\-yx is in N. Therefore

xy and yx are in N, N is a subalgebra and A is not a nodal algebra.
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