ON NEARLY COMMUTATIVE NODAL ALGEBRAS
IN CHARACTERISTIC ZERO

MICHAEL RICH

ABsTrRACT. In this paper we consider algebras satisfying the
identity (I) x(xy)+ (yx)x =2(xy)x and show that there are no nodal
algebras of this type over any field F of characteristic zero. The
proof is obtained by first showing that if x is an element of a finite-
dimensional algebra satisfying (I) over a field of characteristic zero
then the operator L(x) —R(x) is nilpotent.

A finite-dimensional power-associative algebra 4 with identity 1
over a field Fis called a nodal algebra [7] if every x in 4 is of the form
x=al+n where a is in F and # is nilpotent, and the set N of nil-
potent elements of A does not form a subalgebra of 4. Albert [1]
has proved that there are no commutative nodal algebras over any
field F of characteristic zero by showing that N forms a subalgebra.
There do exist, however, examples of nodal algebras over fields of
characteristic zero [2].

Algebras satisfying (I) have been studied by Kosier [5], Witthoft
[8] and the author [6]. It should be noted that in linearized form (I)
reduces to

M 2(zy) + 2(xy) + (32)z + (¥2)x = 2(xy)z + 2(zy)x
and in operator form (I) is just

2) L(x)? + R(x)? = 2L(x)R(x)

or

€) L(x)(L(x) — R(x)) = (L(x) — R(x))R(x)

where L(x)(R(x)) is the operator which acts as follows: yL(x)
=xy(yR(x) =yx).

In a commutative algebra L(x) —R(x) =0. For algebras satisfying
(I) we have the following.

THEOREM 1. Let A be a finite-dimensional algebra satisfying (I)
over a field F of characteristic zero. Then for any element x the operator
L(x) —R(x) is nilpotent.
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! The author is indebted to the referee for his suggestions in shortening the proof
of Theorem 1.
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PRrooF. It is known [4, p. 43] that a transformation T on a finite-
dimensional vector space V over a field of characteristic zero is nil-
potent if all of its powers have trace zero;i.e.,tr I7"=0(n=1,2, - - - ).
We show that T = (L(x) — R(x))? is nilpotent. Consider
tr [(L(x) —R(x))"] for m=2. Clearly,

tr[(L(x) — R@)"] = tr[L(x)(L(x) — R(x))(L(x) — R(x))""?]
= tr[R(0)(L(x) — R(x))"*(L(x) — R(»))]

now, by (3), L(x)(L(x) —R(x)) =(L(x) —R(x))R(x) and by the com-
mutativity of the trace, tr[R(x)(L(x)—R(x))"*(L(x)—R(x))]=
tr[(L(x) —R(x))R(x)(L(x) — R(x)™?)]. Therefore,

tr[(L(x) — R(x))"] = tr[(L(x) — R(x))R(x)(L(x) — R(x))"?]
— tr[(L(x) — R(x))R(x)(L(x) — R(x))™?]
=0.

Therefore, (L(x) —R(x))? is nilpotent.
CoROLLARY. For A as above, trL(x) =trR(x) for any element x.

It should be noted that if 4 is flexible then Theorem 1 is trivial
since then (2) is just (L(x) —R(x))?=0.

THEOREM 2. There do not exist any nodal algebras satisfying x(xy)
+ (yx)x =2(xy)x over any field F of characteristic zero.

Proor. Gerstenhaber [3, p. 29] has shown that in a commutative
power-associative algebra over a field F of characteristic zero, the
assumption that an element # is nilpotent implies that R(n) is nil-
potent. If an algebra 4 is not commutative this result can be applied
to A+ where At is the same vector space as 4 but multiplication in
At is given by: x-y=3(xy+yx), xy the multiplication in 4. Thus, if
a is nilpotent in 4 then R(a)*=3%(R(e)+L(a)) is nilpotent and
trR(a)+trL(a) =0.

Now let A be a finite-dimensional power-associative algebra
satisfying (I) over a field F of characteristic zero, every element a of
A being of the form a =al-+# with # nilpotent. We show that the set
N of nilpotent elements of 4 forms a subalgebra. Asin [6, Theorem 1]
write (1) in terms of operators to get,

(4) R(y)L(x) + R(xy) + L(yx) + L(y)R(x) = 2L(xy) + 2R(y)R(%).
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If we interchange x and y in (4) and subtract the result from (4) we
have: [L(y), Rx)]+[R(), L(x)]+R([x, ])+L([y, x]) =2L([x, y])
+2[R(y), R(x)] (as usual [4, B] denotes AB—BA) which gives
rise to:

®) tr(R[z, y]) + tr L([y, z]) = 2 tr L([=, 5]).

Let [x, y]=—[y, x]=al+#n with @ in F and # nilpotent. By [3]
tr L(n)+tr R(n)=0. By the corollary tr L(n)=tr R(n). Therefore
tr L(n)=tr R(n)=0. Thus (5) reduces to: tr R(al)—tr L(al)
=21tr L(al) or 2 a dim 4 =0. Therefore &« =0. In particular, if x and
y are in N then [x, y] is in N. But by [1] xy+yx is in N. Therefore
xy and yx are in N, N is a subalgebra and 4 is not a nodal algebra.
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