A NOTE ON QUOTIENT SEMIRINGS

D. R. LATORRE

In a previous article [1] Allen obtained an exact analogue of the fundamental homomorphism theorem for a certain class of semiring homomorphisms called maximal homomorphisms. The crux of the argument involved the notion of a Q-ideal, by which the semiring is partitioned into cosets modulo such an ideal, and the construction of a particular quotient semiring modulo a Q-ideal. This note gives necessary and sufficient conditions, in terms of homomorphisms, for an ideal to be a Q-ideal; shows that Q-ideals are included among the k-ideals considered in [4]–[7]; and deduces that the particular quotient semiring modulo a Q-ideal used in [1] actually coincides with the more familiar quotient structure first employed in [2]–[3]. We use without comment the definitions, terminology, and notation of [1].

The familiar construction of a quotient semiring modulo an ideal is as follows: given an ideal I of semiring $(S, +, \cdot)$ define a relation ρ by

$$\rho = \{(x, y) \in S \times S : x + i_1 = y + i_2 \text{ for some } i_1, i_2 \in I\}.$$

Then ρ is a congruence on both (S, +) and (S, \cdot) and under the usual operations of addition (\oplus) and multiplication (\circ) of congruence classes the ρ -classes become a semiring $(S/I, \oplus, \circ)$. The ρ -class containing $a \in S$ need not be the coset a+I. From [5] we note that I is contained in a ρ -class C_I which is the smallest k-ideal of S containing I and the zero of $(S/I, \oplus, \circ)$, that $(S/I, \oplus, \circ) = (S/C_I, \oplus, \circ)$, and that I is a ρ -class if and only if I is a k-ideal. (An ideal is a k-ideal if whenever $x+i\in I$, where $x\in S$ and $i\in I$, we have $x\in I$.)

THEOREM 1. Let I be a Q-ideal of semiring $(S, +, \cdot)$ and define a relation η by

$$\eta = \{(x, y) \in S \times S : x, y \in q + I \text{ for some } q \in Q\}.$$

Then $\eta = \rho$ and I is the ρ -class containing zero.

PROOF. If $(x, y) \in \eta$, say $x = q + i_1$, $y = q + i_2$ for some $q \in Q$ and i_1 , $i_2 \in I$, then $x + i_2 = (q + i_1) + i_2 = (q + i_2) + i_1 = y + i_1$ so that $(x, y) \in \rho$. Conversely, suppose $(x, y) \in \rho$, say $x + i_1 = y + i_2$ with $i_1, i_2 \in I$. Let $x = q_1 + i_3$ and $y = q_2 + i_4$ where $q_1, q_2 \in Q$ and $i_3, i_4 \in I$. Then

Received by the editors May 30, 1969.

$$x + i_1 = (q_1 + i_3) + i_1 = q_1 + (i_3 + i_1) = y + i_2 = (q_2 + i_4) + i_2$$

= $q_2 + (i_4 + i_2)$.

But $q_1+(i_3+i_1) \in q_1+I$ and $q_2+(i_4+i_2) \in q_2+I$, whence $q_1=q_2$ and $q_1+I=q_2+I$. Thus $(x, y) \in \eta$.

Now there is a unique $q \in Q$ with $0 \in q+I$, say 0=q+i, so $q+I=q+0+I=q+q+i+I\subseteq q+q+I$. By Lemma 7 of [1] q+q+I is contained in a unique coset q'+I ($q' \in Q$), which, in view of $q+I\subseteq q+q+I$, is q+I. Thus q+q+I=q+I implies $q+q=q+i_1$, for some $i_1 \in I$. Then $I=0+I=q+i+I\subseteq q+I$ and

$$q + I = q + 0 + I = q + q + i + I = q + i_1 + i + I$$

= $0 + i_1 + I \subseteq I$

which shows that I is the η -class q+I containing 0.

Theorem 1 and the preceding remarks immediately give

COROLLARY 2. A Q-ideal I of semiring $(S, +, \cdot)$ is a k-ideal and the zero of the quotient semiring $(S/I, \oplus, \circ)$.

REMARK. From Theorem 1 it follows that there is at most one partition of S by cosets of I; an independent proof of this without introducing relation ρ is straightforward.

THEOREM 3. Let I be a Q-ideal of a semiring $(S, +, \cdot)$, let $(S/I, \oplus, \circ)$ be the quotient semiring defined above, and let $(\{q+I\}_{q\in Q}, \oplus_{Q}, \odot_{Q})$ be the quotient semiring of [1]. Then these two quotient semirings are equal.

PROOF. The set of η -classes is precisely the set $\{q+I\}_{q\in Q}$ and \bigoplus_{Q} and \bigoplus_{Q} are ordinary addition and multiplication of η -classes. Theorem 1 shows $\eta = \rho$.

REMARK. Theorem 3 shows that the isomorphism of Theorem 9 in [1] can be replaced by equality.

THEOREM 4. An ideal I of a semiring $(S, +, \cdot)$ is a Q-ideal for some subset Q of S if and only if there is a semiring homomorphism $\phi: S \rightarrow T$ such that the inverse image of each $t \in T$ is a coset of I.

PROOF. If I is a Q-ideal for the subset Q of S, the natural homomorphism $\phi: S \rightarrow S/I$ is such that $\phi^{-1}(q+I) = q+I$. Conversely, suppose $\phi: S \rightarrow T$ is such a semiring homomorphism. Define η on S by $\eta = \{(x, y) \in S \times S : x\phi = y\phi\}$. Then η is a congruence on $(S, +, \cdot)$ and each η -class is a coset of I. The partition of S consisting of the distinct η -classes makes I into a Q-ideal.

In [1] a homomorphism $\phi: S \rightarrow S'$ is called maximal if for each

 $a \in S'$ there is an element $c_a \in \eta^{-1}(\{a\})$ such that $x + \ker \eta \subseteq c_a + \ker \eta$ for each $x \in \eta^{-1}(\{a\})$. Thus for each $a \in S'$, $\eta^{-1}(\{a\}) = c_a + \ker \eta$. Conversely, if $\eta: S \to S'$ is any homomorphism such that for each $a \in S'$, $\eta^{-1}(\{a\}) = c_a + \ker \eta$ for some $c_a \in S$ then η is maximal. In short, a homomorphism $\eta: S \to S'$ is maximal if and only if the inverse image of each $a \in S'$ is a coset of $\ker \eta$. Together with Theorem 4 this immediately gives (see Lemma 14 of [1])

COROLLARY 5. The kernel of a maximal homomorphism is a Q-ideal.

REFERENCES

- 1. Paul J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
- 2. S. Bourne, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 163-170. MR 13, 7.
- 3. ——, On the homomorphism theorem for semirings, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 118-119. MR 13, 618.
- 4. M. Henriksen, *Ideals in semirings with commutative addition*, Notices Amer. Math. Soc. 5 (1958), 321. Abstract #542-183.
- 5. D. R. LaTorre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12 (1965), 219-226. MR 34 #214.
- 6. —, A note on the Jacobson radical of a hemiring, Publ. Math. Debrecen 14 (1967), 9-13. MR 36 #3827.
- 7. ——, The Brown-McCoy radicals of a hemiring, Publ. Math. Debrecen 14 (1967), 15-28. MR 36 #3828.

CLEMSON UNIVERSITY