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ANALYTIC VARIETY
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1. Introduction. In a recent paper [3], H. Whitney posed the
following problems:

Let X be a complex analytic variety, and let ¥ be a nonisolated
point of X.

(1) Can we choose a neighborhood N of ¥ such that for each point
x of N there exists a connected one-dimensional complex analytic
subvariety C(x) of N that contains x and y and is regular at each of
its points except possibly y [3, p. 214 ]?

(2) Furthermore, can we choose the one-dimensional subvarieties
C(x) as above so that any two distinct members of the family { C(x) }
intersect only at y [3, p. 231]?

In this paper, we give a short elementary solution to problem (1),
using some methods of T. Bloom [1]. The solution to problem (2)
with dim X =2 is a special case of a result of Bloom [1]. We do not
know the answer to question (2) with dim X >2.

We use the following terminology:

An analytic set in a (reduced) complex analytic space X is a closed
complex analytic subvariety of X. An analytic set is said to be regular
if it contains no singular points (i.e., if it is a complex manifold). An
analytic curve in X is a pure 1-dimensional analytic set in X; an ana-
lytic hypersurface is an analytic set of constant codimension 1. Other
standard terminology used in this paper can be found in [2].

THEOREM 1. Let X be a complex analytic space, Y an analytic set in
X, and y a point of Y. Then there exists a neighborhood N of y in X such
that for all xEN — Y, we can find a (globally) irreducible analytic curve
C(x) in N such that

(i) x€C(x),

(i) CENY={y},

(iii) C(x)—{y} is regular.

The affirmative answer to question (1) follows from Theorem 1 with
Y= {y} Note that it does not follow that C(x) is locally irreducible
at y, and it remains an open question whether we can extend Theorem
1 by adding the condition that C(x) be irreducible at y.
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We shall show that Theorem 1 is a consequence of the following
result.

THEOREM 2. Let U be an open set in C*+! (n=1), and let A be an
analytic hypersurface in U such that 0 A. Then there exists a neighbor-
hood U'C U of 0 such that for all pEU’'— A, we can find a connected
regular analytic curve C(p) in U’ with p& C(p) and C(p)NA = {0 } .

2. Proof that Theorem 2 implies Theorem 1. We use induction on
dim,X. If dim,X is 0 or 1, the theorem is trivial. So suppose Theorem
1 has been proven for dimensions up to and including 7, and let
dim,X =n-+1. We assume without loss of generality that dim, Y <n,
since otherwise we can ignore those irreducible (#-+41)-dimensional
components of X which are contained in Y. By restricting our con-
sideration to a sufficiently small neighborhood of y (which we also
call X), we can assume that X has the following “local parametriza-
tion”: X = X,\UZ, where Z is an analytic variety of dimension at most
n containing y, and X, is an analytic variety of pure dimension n+1
containing y; we furthermore have a neighborhood U of 0 in C**!, an
analytic hypersurface 4 in U, and a proper holomorphic map
7: X,—U such that 7=1(0) = {y}, 7(XiNZ)C4, and = is a local
biholomorphism outside of 7=1(4).

Note that 0 =7 (y) €4 since yEX1MNZ. Let

T=1l'—l(A)CX1, X2=TUZ.

Therefore X;UX,=X, XiNX,=T, and dim X, =#n. Choose a neigh-
borhood U’C U of 0 as in the statement of Theorem 2, and let

Ny = rY(U") C X1

Choose an open W in X such that Ny=X\N\W. By the induction
hypothesis, we can choose a neighborhood N,CX,"\W of y that
satisfies the conditions of Theorem 1 applied to X,\W. Let

N=(N1—T)U]\’72=W—(X2—N2),

which is open in X and contains y.

In order to show that NV satisfies the conditions of Theorem 1, it
suffices to consider xEN;—TCN;—Y. Then w(x)EU'—A. Let L
be a connected regular analytic curve in U’ with w(x)EL and
LNA=1{0}, and let C'=7"Y(L)C N,. Since C'NT=7"1(0) = {5}, it
follows that C’ is an analytic curve in N, C'— { y} is regular, and
CNY= {y} Let C(x) be the irreducible component of C’ that con-
tains x. Since L is irreducible, 7(C(x)) =L and therefore y& C(x).
Thus C(x) is our desired analytic curve.
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3. Proof of Theorem 2. We adopt the following convention
throughout this section: If £ is either a point in C**! or a function
with values in C*t!, we write £= (9, &1, - - -, &),

Let 4 and U be given as in the statement of Theorem 2. Shrink U
if necessary, so that we can choose a holomorphic function f on U
such that

A =loc(f) = {3 € U:f(z) = 0}.

Make a linear change of coordinates (if necessary) so that 0 is an

isolated point of loc(f, 2!, + - -, 2"), where 2% 2!, - - -, 2" are the coor-
dinates in UCC*tL. Let
= (f,2, --,2": U—>C,

Choose a neighborhood VC C**! of 0 and shrink U again so that
7(U)CV, m: U—V is a proper map, and 7 (0) = {0} (see [2, p.
161]). Assume that 8f/dz° vanishes at 0, since otherwise the conclu-
sion of Theorem 2 would be obvious. Then loc(df/dz°%) is an analytic
hypersurface in U containing 0. Let B =w(loc(df/02°), an analytic
hypersurface in V. Choose a connected neighborhood V'C V of 0 and
a holomorphic function % on V' such that BNV’ =loc(k). Choose
open ballsA and A’ about O such that A'C CAC CV'. Let U’ =7"(4"),
and note that

ANV = 7w € A v = 0}.

Let p be an arbitrary point in U'—A4. Let a=m(p) EA’ (note that
a®#0), and let L, C C**! be the complex line containing 0 and a. (The
family of analytic curves {r=1(L.MNA’)} is a special case of a construc-
tion of Bloom [1].) In order to modify L, so that we obtain (via 7~?)
a regular analytic curve in U’ that satisfies the conditions of the
theorem, we need the following definition and lemma (which is proved
at the end of this section).

DEFINITION. If f is a holomorphic function defined in a neighbor-
hood of a point xEC™, we let v(f; x) denote the order of f at x (v(f; x)
=0if f(x) #0; »(f; x) = 4+ « if f=0). Let 270 be a holomorphic func-
tion on a connected open set VC C**!. Let K be a closed subset of C
without isolated points, and let g: K—V be holomorphic (i.e., g can
be extended holomorphically to a neighborhood of K). We say that
g is h-transverse if

v(hog;t) = v(k; g(t) forallt € K.

(The condition that g be h-transverse means geometrically that for
each point ¢{,Eloc(k o g), the image under g« of the tangent space of



1970) LOCAL COMPLEX ANALYTIC CURVES 435

C at ¢, is not contained in the tangent cone [3, pp. 211, 219-223] of
loc (k) at g(to).)

LEMMA. Let h#£0 be a holomorphic function on a connected open set
VCC™!, and let K be a connected compact subset of C. Let ¢, and c, be
distinct points of K, and let wy, woE V. Consider the metric space § (with
the sup-norm metric) of all holomorphic maps g=(g°% - - -, g"): K-V
such that g°(t) =t and g(c;) =w; for j=1, 2. Suppose that § is not empty.
Then the set of h-transverse maps in § is dense in F.

Let y: C—C»t! be the linear map given by y¥(a®) =a (and thus
Image (¥) =L,). Let K=y~!(4), a closed disk about 0; let

J={ra0=r=<1} CK.

By applying the above lemma (with ¢;=0, c;=a® w, =0, w;=a), we
can choose an h-transverse holomorphic map g: K—V’ (near y/| K)
such that

(1) g°() =¢,

(2) £(0)=0, g(a®) =g,

(3) g(/)Ca’,

@) g@K)CV'—A".

Lett, - - -, tmsEK be the distinct zeros of & o g, and let x;=g(t;) E V’,
for 1 =j=<m. Let v(¢) be a polynomial which vanishes to first order at
t, + + +, tm, and a® (Note that & o g(0) =0, so one of the ¢; must be 0.)
For A=(0, A, - - -, A®)EC"H, define

o) = g + O\
For M sufficiently small,
v(hogn ty) Z v(k; x;) = v(hog; 1)),

and therefore »(ho g\; t;)=v(hog; t;) for 1<j<m, and ¢, - - -, tn
are the only zeros of g, in K. Thus, for such A,

a(K)N B = {z;, - -+, zal.

Let Cyx=7"Y(gx(K)NA’). For X small, C, is an analytic curve in U’
that is regular outside of the finite set S=7—! {xl, cee, x,,.}, since 7
has rank n+1 wherever 9df/32°#0. Consider an arbitrary point
gESNU’. Let

o %

= LBk,

k
o for1 <k = n.
azk Q at x(q) ’

Since
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1 1 n n
Go=loc(z —gppof, - -,2 —gpof)N U,
it follows that C) is regular at ¢ provided that the determinant
d = det()] —Bn) (1 Sj, k< n)

does not vanish (where 8 =1if k=3, § =0 if k>j). A simple calcula-
tion (for example, consider the characteristic polynomial of the ma-
trix (B,a})) shows that

d=1—=23 B
1

Since S is finite, we conclude that we can choose an arbitrarily small
A= (0,\, - - - ,A") such that Cyisregular. (One can also arrive at this
conclusion, without calculating determinants, by instead proving a
general fact about holomorphic maps from UCC**! into C**! that
have rank n at a given point ¢& U.) Choose a small N such that g,
satisfies conditions (1) through (4) above and C, is a regular analytic
curve. Let C(p) be the connected component of C\ that contains p.
Therefore, the analytic curve 7(C(p)) equals the connected compo-
nent of g),(K)MA’ that contains a. Condition (3) above then implies
that 0&n(C(p)), and therefore 0& C(p). Thus C(p) is our desired
analytic curve.

To complete this discussion, we now prove the lemma: Let &, #,
etc., be given as in the statement of the lemma. For fES, define

I(f;0) =v(hof; ) — w(h; f(1)) Z 0,
I(f) = 2 I(f; )  (LEK).

(The above sum is finite if 2 o f#£0; I(f) =+ « if ko f=0.) Let & be
an arbitrary nonempty open subset of §. Choose a function g&F,
such that

I(g) = min{I()): f € Fo}.

We must show that I'(g) =0. Suppose, on the contrary, that I(g) =1.
If I(g)<+ o, lett, - - -, tnEK be the distinct zeros of ko g. Then
I(g) = 22 1(g; ).

1

Assume without loss of generality that I(g; ¢)>0. Let ¥(¢) be a poly-
nomial that vanishes to first order at the points ¢y, ¢, &, - + -, tm. For
A=(0, AL, - - -, A®)EC™t!, define
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a@® = gl) + y(OA, fort € K.

Thus g\(¢;) =g(¢;) and g\ EF, for N sufficiently small. By considering
the Taylor expansion of 4 o g) about ¢, we conclude that there exist
arbitrarily small A= (0, N, - - -+, A") such that

v(ho g ts) = v(h; g(t) < v(hog;ty).

For such a A sufficiently small, we let Z;C K denote the set of zeros of
g near ¢; (for 1 £j=<m), and we conclude that

S U Dt E Z) £ I(g; 1),

with the strict inequality holding for j=1. Hence I(g\) <I(g), contra-
dicting the minimality of I(g). Finally, if I(g) =+ «, by repeating
the above argument with m =1 and £, an arbitrary point of K, we
obtain g, with I(g,) < + =, also contradicting the minimality of I(g).
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