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1. Introduction. In a recent paper [3], H. Whitney posed the

following problems:

Let A be a complex analytic variety, and let y be a nonisolated

point of X.

(1) Can we choose a neighborhood N of y such that for each point

x of N there exists a connected one-dimensional complex analytic

subvariety C(x) of N that contains x and y and is regular at each of

its points except possibly y [3, p. 214]?

(2) Furthermore, can we choose the one-dimensional subvarieties

C(x) as above so that any two distinct members of the family { C(x)}

intersect only at y [3, p. 231 ] ?

In this paper, we give a short elementary solution to problem (1),

using some methods of T. Bloom [l]. The solution to problem (2)

with dim A = 2 is a special case of a result of Bloom [l]. We do not

know the answer to question (2) with dim A>2.

We use the following terminology:

An analytic set in a (reduced) complex analytic space A is a closed

complex analytic subvariety of X. An analytic set is said to be regular

if it contains no singular points (i.e., if it is a complex manifold). An

analytic curve in A is a pure 1-dimensional analytic set in A; an ana-

lytic hyper surf ace is an analytic set of constant codimension 1. Other

standard terminology used in this paper can be found in [2].

Theorem 1. Let X be a complex analytic space, Y an analytic set in

X, and y a point of Y. Then there exists a neighborhood N of y in X such

that for all xEN—Y, we can find a (globally) irreducible analytic curve

C(x) in N such that

(i) xEC(x),

(ii) c(*)ny={y},
(iii) C(x) — {y} is regular.

The affirmative answer to question (1) follows from Theorem 1 with

Y= {y}. Note that it does not follow that C(x) is locally irreducible

at y, and it remains an open question whether we can extend Theorem

1 by adding the condition that C(x) be irreducible at y.
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We shall show that Theorem 1 is a consequence of the following

result.

Theorem 2. Let U be an open set in C"+1 (re^l), and let A be an

analytic hypersurface in U such that OEA. Then there exists a neighbor-

hood U'EU of 0 such that for all pEU' — A, we can find a connected

regular analytic curve C(p) in U' with p E C(p) and C(p) C\A = {0}.

2. Proof that Theorem 2 implies Theorem 1. We use induction on

dim„X. If dim„X is 0 or 1, the theorem is trivial. So suppose Theorem

1 has been proven for dimensions up to and including re, and let

dimj,.X" = re-rT. We assume without loss of generality that dim„F:Sre,

since otherwise we can ignore those irreducible (re-f-1)-dimensional

components of X which are contained in Y. By restricting our con-

sideration to a sufficiently small neighborhood of y (which we also

call X), we can assume that X has the following "local parametriza-

tion": X = XiUZ, where Z is an analytic variety of dimension at most

re containing y, and Xi is an analytic variety of pure dimension re + 1

containing y; we furthermore have a neighborhood U of 0 in Cn+1, an

analytic hypersurface A in U, and a proper holomorphic map

ir: Xi-^U such that ir_1(0) = {y}, tt(XiC\Z)EA, and ir is a local

biholomorphism outside of ir~l(A).

Note that 0=ir(y)EA since yEXiC\Z. Let

T = tt-\A) EXi,       X2= T\J Z.

Therefore Xi\JX2 = X, XiC\X2= T, and dim X2 = n. Choose a neigh-

borhood U'EU oi 0 as in the statement of Theorem 2, and let

Ni = w-W) C Xi.

Choose an open W in X such that Ni—Xir\W. By the induction

hypothesis, we can choose a neighborhood N2EX2C\W of y that

satisfies the conditions of Theorem 1 applied to X2(~\W. Let

N = (Ni - T) yj N2 = W - (X2 - N2),

which is open in X and contains y.

In order to show that N satisfies the conditions of Theorem 1, it

suffices to consider xENi — TENi—Y. Then ir(x)E U' — A. Let L

be a connected regular analytic curve in U' with ir(x)EL and

Lr\A={0}, and let C =it-1(L)ENi. Since CT\T = w-l(0) = {y}, it

follows that C is an analytic curve in N, C — {y} is regular, and

CT\Y= {y}. Let C(x) be the irreducible component of C that con-

tains x. Since L is irreducible, w(C(x))=L and therefore yEC(x).

Thus C(x) is our desired analytic curve.



434 BERNARD SHIFFMAN [March

3. Proof of Theorem 2. We adopt the following convention

throughout this section: If £ is either a point in Cn+1 or a function

with values in Cn+1, we write £ = (£", (-1, • • • , £n).

Let /I and £/ be given as in the statement of Theorem 2. Shrink U

if necessary, so that we can choose a holomorphic function f on U

such that

A =loc(/) = {zE U:f(z) =0}.

Make a linear change of coordinates (if necessary) so that 0 is an

isolated point of loc(/, 21, • • • , zn), where z°, z1, • • • , zn are the coor-

dinates in fiCC"+1. Let

* = if, z\ ■ ■ • ,zn): r/-»C+1.

Choose a neighborhood VEC"+l of 0 and shrink U again so that

tt(U)EV, t: U-+V is a proper map, and 7r-1(0) = {o} (see [2, p.

161]). Assume that df/dz° vanishes at 0, since otherwise the conclu-

sion of Theorem 2 would be obvious. Then loc(d//dz°) is an analytic

hypersurface in U containing 0. Let .B=7r(loc(d//dz0)), an analytic

hypersurface in V. Choose a connected neighborhood V'E V of 0 and

a holomorphic function h on V such that BCW=\oc(h). Choose

open balls A and A'about 0 such that A'CCACCF'. Let 17'= 7T-1(A'),
and note that

IH V = irl{wE A':w° = 0}.

Let p be an arbitrary point in U'—A. Let a = w(p)EA' (note that

a"7*0), and let L„CC"+1 be the complex line containing 0 and a. (The

family of analytic curves {7r-1(LarW)} is a special case of a construc-

tion of Bloom [l].) In order to modify La so that we obtain (via7r_1)

a regular analytic curve in U' that satisfies the conditions of the

theorem, we need the following definition and lemma (which is proved

at the end of this section).

Definition. If / is a holomorphic function defined in a neighbor-

hood of a point xECm, we let v(f; x) denote the order of/ at x (v(f; x)

= 0 if/(x)^0; v(f; x) = + =° if/=0). Let h^O be a holomorphic func-

tion on a connected open set VECn+1. Let A be a closed subset of C

without isolated points, and let g: K—>V be holomorphic (i.e., g can

be extended holomorphically to a neighborhood of A). We say that

g is h-transverse if

v(h og;t) = v(h; g(t))       for all / E K.

(The condition that g be /(-transverse means geometrically that for

each point /0Eloc(& o g), the image under g* of the tangent space of
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C at t0 is not contained in the tangent cone [3, pp. 211, 219-223] of

loc (h) at g(t0).)

Lemma. Let h^O be a holomorphic function on a connected open set

FCCn+I, and let K be a connected compact subset of C. Let Ci and c2 be

distinct points of K, and let wu w2E V. Consider the metric space CF (with

the sup-norm metric) of all holomorphic maps g= (g°, ■ • • , g"): K-+V

such that g°(t) =t and g(cf) =Wjforj= 1, 2. Suppose that CF is not empty.

Then the set of h-transverse maps in CF is dense in CF.

Let fa: C—>C"+1 be the linear map given by faia")=a (and thus

Image (fa =La). Let K=\j/~l(A), a closed disk about 0; let

J = {ra°:0 £ r ^ l} E K.

By applying the above lemma (with Ci = 0, c2 = a°, Wi = 0, w2=a), we

can choose an h-transverse holomorphic map g: K—*V (near fa\K)

such that

(1) g°(t)=t,

(2) g(0)=0,g(a°)=a,

(3) g(J)EA',
(4) g(dK)EV'-A'.

Let h, • • - , tmEK be the distinct zeros oi ho g, and let Xj = g(tf) E V,

for 1 ̂ j^m. Let 7(0 be a polynomial which vanishes to first order at

h, • • • , tm, and a0. (Note that h o g(0) —0, so one of the tj must be 0.)

For X=(0, X1, • • • , \»)eC"+I, define

«x(fl = i(0 + 7(0X-

For X sufficiently small,

v(h o gx; tj) ^ v(h; x,) = v(h o g; tf),

and therefore v(hog\; tf)=v(ho g; tf) for l^j^m, and h, - - - , tm

are the only zeros of g\ in K. Thus, for such X,

g\(K) C\ B = [xi, - - - ,xm}.

Let C\ = ir~1(g\(K)P\A'). For X small, C\ is an analytic curve in U'

that is regular outside of the finite set S = ir~1{xi, ■ • • , xm}, since ir

has rank re + 1 wherever 3//dz°^0. Consider an arbitrary point

qESt^U'. Let

3/                          dgx k
—-     = /?*,       - = ax,       for 1 ^ k g re.
dz*   Q dt    T(8)

Since
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Cx = 10C(2   - g\ Of, ■ ■ • , z" - gl Of) C\ U',

it follows that C\ is regular at q provided that the determinant

d = det(5* - Pjotl)        (1 gj, kg n)

does not vanish (where o*= 1 if k=j, 5* = 0 if k7*j). A simple calcula-

tion (for example, consider the characteristic polynomial of the ma-

trix (Bjai)) shows that

n

d = 1 - £ /W
i

Since 5 is finite, we conclude that we can choose an arbitrarily small

X = (0, X1, • • • , Xn) such that C\ is regular. (One can also arrive at this

conclusion, without calculating determinants, by instead proving a

general fact about holomorphic maps from UECn+l into C"+1 that

have rank n at a given point qE U.) Choose a small X such that g\

satisfies conditions (1) through (4) above and C\ is a regular analytic

curve. Let C(p) be the connected component of C\ that contains p.

Therefore, the analytic curve w(C(p)) equals the connected compo-

nent of g\(A)fW that contains a. Condition (3) above then implies

that 0Eir(C(p)), and therefore 0EC(p). Thus C(p) is our desired

analytic curve.

To complete this discussion, we now prove the lemma: Let fF, h,

etc., be given as in the statement of the lemma. For fE$, define

I(f;l) =v(hof;t) -v(h;f(t)) ^ 0,

'(/) = £ Kf;t)     (tER).

(The above sum is finite if h o/^0; 1(f) = + 00 if h o/=0.) Let 'So be

an arbitrary nonempty open subset of ff. Choose a function gE^o

such that

I(g) = m\n{l(f):fESo}.

We must show that 1(g) =0. Suppose, on the contrary, that 1(g) ^ 1.

If 1(g) < + <», let h, ■ ■ • , tmEK be the distinct zeros of h o g. Then

m

Kg) = E Kg; tj).
1

Assume without loss of generality that I(g; ti)>0. Let y(t) be a poly-

nomial that vanishes to first order at the points C\, c2, h, • • • , tm. For

X = (0, X1, • • • , X")GC"+l, define
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gx(» = g(0 + y(0\      for t E K.

Thus g\itj) = g(tf) and g\E5o for X sufficiently small. By considering

the Taylor expansion of h o gx about h, we conclude that there exist

arbitrarily small X=(0, X1, • • • , X") such that

"(h o gx; h) = vQt; gih)) <vQiog; tf).

For such a X sufficiently small, we let ZjEK denote the set of zeros of

gx near tj (for 1 ̂ j^m), and we conclude that

Y(Kgx;t):tEZj) ^l(g;tj),

with the strict inequality holding for j = 1. Hence Iig\) <Iig), contra-

dicting the minimality of 7(g). Finally, if /(g) = 4-o°, by repeating

the above argument with m = 1 and h an arbitrary point of K, we

obtain gx with /(gx) < + °° , also contradicting the minimality of 7(g).
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