APPLICATIONS OF AN INEQUALITY FOR
THE SCHUR COMPLEMENT

EMILIE V. HAYNSWORTH

1. Introduction. Suppose B is a nonsingular principal submatrix
of an n X7 matrix 4. The Schur Complement of B in 4, denoted by
(4/B), is defined as follows: Let A be the matrix obtained from A
by the simultaneous permutation of rows and columns which puts B
into the upper left corner of 4,

(0

leaving the rows and columns of B and G in the same increasing order
asin 4. Then the Schur Complement of B in 4 is

(1) (4/B) = G — DB-'C.

Schur proved that the determinant of A4 is the product of the determi-

nant of any nonsingular principal submatrix B with that of its Schur
complement,

©) | 4] = |Bl|/B)].

The inertia of an Hermitian matrix 4 is given by the ordered
triplet, In A = (r, v, 8), where w denotes the number of positive, » the
number of negative, and 8 the number of zero roots of the matrix 4.
In a previous paper [2], it was shown that the inertia of an Hermitian
matrix can be determined from that of any nonsingular principal
submatrix together with that of its Schur complement. That is, if 4
is Hermitian, and B is a nonsingular principal submatrix of 4, then

€) In A = In B + In(4/B).

More recently, the author, with Douglas Crabtree [1], proved the
identity,

(4/B) = ((4/C)/(B/C)).

In Theorem 1 of §2 we make use of (3) to prove an extension of a
theorem by Marcus [3]. Then in Theorem 2 we apply the result of
Theorem 1 to obtain an inequality for the Schur complement which
is similar to Minkowski's famous inequality (see [4]) for the deter-
minant of the sum of positive definite Hermitian matrices:
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| A4+ Bl =z | A|t»+ | B|t» (Minkowski).

This, of course, implies
4) |4+ B| =|4| + |B].

A number of extensions of the Minkowski inequality have been
proved by Marcus, Minc and others (see [5]).

In Theorem 3 we obtain some new inequalities for the determinant
of the sum of two positive definite Hermitian matrices.

2. An extension of a theorem by Marcus. In a recent paper [3]
M. Marcus proved a number of interesting inequalities for positive
definite Hermitian matrices, including the following: If H and K are
positive definite matrices of order #, and X and Y are arbitrary
vectors, then

HX, X) + (K'Y, V) 2 (H+ K)(X + D), (X + T)).

It is shown in Theorem 1 that by making use of the properties of the
Schur complement this inequality can be extended to the case where
X and Y are arbitrary n Xm matrices. We shall use the notation 4 =0
for a positive semidefinite matrix (p.s.d. matrix), with strict inequal-
ity implying that A4 is positive definite (p.d.). If 4 and B are p.s.d.
matrices, the statement 4 =B will mean 4 —B=0.

THEOREM 1. Suppose H and K are positive definite matrices of order
n. Then if X and Y are arbitrary n Xm matrices, the m Xm matrix

(5) Q=X*H' X4+ KV - X+ V)H+K)(X+7Y)
is positive semidefinite.

PRrROOF. Let 4 and B be the Hermitian matrices of order 27,

P (H X ) R (K Y )
“\x* x*H-1x)’ “\r* v*kv)

From (3), it is clear that a nonzero Hermitian matrix is positive
semidefinite (definite) if and only if there exists a positive definite
principal submatrix whose Schur complement is positive semidefinite
(definite). Thus, by inspection, the matrices A and B are positive
semidefinite. Then, since the sum of any two positive semidefinite
matrices is also positive semidefinite (or definite) we have

H+ K X+Y )g

A+B=(
X*+ ¥* X*H-'X + V*EK-'Y
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This proves the theorem, as the matrix Q in (5) is the Schur comple-
ment of H+K in A+ B.

3. An inequality for the Schur complement.

THEOREM 2. Suppose A and B are Hermitian matrices of order n,
partitioned into 2 X2 block matrices, A= (4i;), B=(By), 1, j=1, 2,
where Ay and By, are square of order m. If A =0, B=0, Au>0, By>0,
then

(6) (A 4+ B/Au+ Bu) 2 (4/4w) + (B/By).

Proor. By the previous arguments, A3+By >0, and 44+B=0.
From the definition,

(4 4+ B/An + Bu) = (Aes + Ba) — (A + Bn)(An + Bu)™!
(A2 + Bp).

By Theorem 1,

(421 + Bo)(An + Bu) (A + Bi) £ Andndp + BB Bua.
Thus
(A + B/ Ay + Bu) 2 (Ass + Ba) — (Anidy1 Ay + BaiBri Byy)
= (4/4n) + (B/Bu).

This proves the formula (6), which we now apply to find a new in-
equality for the determinant of the sum of two positive definite
Hermitian matrices.

4. Some determinantal inequalities.

THEOREM 3. Suppose A and B are positive definite Hermitian ma-
trices. Let Ay and By, k=1, - - -, n, denote the principal submatrices of
order k in the upper left corner of the matrices A and B respectively. Then

n—1 B n—1 A
(1 |4+ B %|A|(1+Z—|——i)+|B|<1+Z | "|>.
i | Ax = | Bil
COROLLARY. If A and B are positive definite, and A > B, then
(8) | 4+ B| > | 4| + | B].

For the proof of Theorem 3 we need the following lemmas. Lemma
1 is probably well known, as it follows immediately from the Min-
kowski inequality (4). Lemma 2 follows as a corollary to Lemma 1
and Theorem 2.
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LeEMMA 1. If A and B are positive definite Hermitian matrices and
A>B, then | Ax| >|Bi|, k=1, - - -, n.

Proor. Let A—B=C>0. Then A,=B;+Ci (k=1, - - -, n) where
A, Bi, and Ci are positive definite, since they are principal subma-
trices of positive definite matrices. Then by (4), |Ak| = |Bk| -|—| Ci|
>|Bi| (k=1,---, n).

LeEmMA 2. If A and B satisfy the conditions of Theorem 2, then
| (4 + B/Au+ Bw)| = | 4|/| Au| + | B|/| Bul.-
ProoF. By Theorem 2 and Lemma 1,
| (44 B/Au+ Bu)| 2 | (4/Aw) + (B/Bw)|
= | (4/4w)] + | (B/Bw)| by (4)
=|A|/|A11|+|Bl/|3u| by (2).

Proor oF THEOREM 3. We prove the theorem by induction on 7.
For n=2, we have from (2),

9) |4+ B| = |41+ Bi| | (4+ B/4:+ BY)|.
By Lemma 2,
| (4+B/4:+B)| = [4]/| 4| + | B]/] By
Thus, using (4) on the first factor on the right in (9),
|4+ B| z (| 4:] + [B])(|4|/] 4| + | B|/] B

which proves (7) for n=2.
Now assume (7) holds for matrices of order less than or equal to
n—1. Then, if A and B are of order n,

| 4+ B| = (| A4ncx+ Ban|)| (4 + B/ 4wy + Bay) |,

where, by the inductive assumption,

IAn—l+Bn—lI
= |5 = |4
2 | Ao {1+ ——)+ Ba- (1+ ————)
(B 42D (o B

and, by Lemma 2,
| (4 4+ B/Aus+ Ba)| 2 | 4| /]| 4nea] + | B| /| Basa] -
Thus
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| 4 + B| z(|A,,_l|(1+Z IB,,|>

| Ak
w2 | Ay | 4] | B
B, 1
+ 18 (145 |Bk|)><|A,._1| +|BH|)
n—2 A
Ll (04 £ 20 4 gy (143 12

| 4] w3 | Bl

n—1 n? I Bkl
22 (14 ME
Bn—l kg | | I
+ ‘ Bn—l (
An~1

v

+E )14
(1 D) sl (0 E 2D,
A ic1 | Bl
This proves Theorem 3.

The corollary follows as an immediate consequence of Lemma 1,
since if 4> B,

| 4| /| Be| > 1 (k=1,---,n).

Hence

|4+ B| =z |A|(1+Z IIAII>+n|BI = |4| +=|B]|.
k=1
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