APPLICATIONS OF AN INEQUALITY FOR THE SCHUR COMPLEMENT

EMILIE V. HAYNSWORTH

1. Introduction. Suppose B is a nonsingular principal submatrix of an $n \times n$ matrix A. The Schur Complement of B in A, denoted by (A/B), is defined as follows: Let \widehat{A} be the matrix obtained from A by the simultaneous permutation of rows and columns which puts B into the upper left corner of \widehat{A} ,

$$A = \begin{pmatrix} B & C \\ D & G \end{pmatrix},$$

leaving the rows and columns of B and G in the same increasing order as in A. Then the Schur Complement of B in A is

(1)
$$(A/B) = G - DB^{-1}C.$$

Schur proved that the determinant of A is the product of the determinant of any nonsingular principal submatrix B with that of its Schur complement,

$$|A| = |B| |(A/B)|.$$

The inertia of an Hermitian matrix A is given by the ordered triplet, In $A = (\pi, \nu, \delta)$, where π denotes the number of positive, ν the number of negative, and δ the number of zero roots of the matrix A. In a previous paper [2], it was shown that the inertia of an Hermitian matrix can be determined from that of any nonsingular principal submatrix together with that of its Schur complement. That is, if A is Hermitian, and B is a nonsingular principal submatrix of A, then

(3)
$$\operatorname{In} A = \operatorname{In} B + \operatorname{In}(A/B).$$

More recently, the author, with Douglas Crabtree [1], proved the identity,

$$(A/B) = ((A/C)/(B/C)).$$

In Theorem 1 of §2 we make use of (3) to prove an extension of a theorem by Marcus [3]. Then in Theorem 2 we apply the result of Theorem 1 to obtain an inequality for the Schur complement which is similar to Minkowski's famous inequality (see [4]) for the determinant of the sum of positive definite Hermitian matrices:

$$|A + B|^{1/n} \ge |A|^{1/n} + |B|^{1/n}$$
 (Minkowski).

This, of course, implies

$$|A+B| \ge |A| + |B|.$$

A number of extensions of the Minkowski inequality have been proved by Marcus, Minc and others (see [5]).

In Theorem 3 we obtain some new inequalities for the determinant of the sum of two positive definite Hermitian matrices.

2. An extension of a theorem by Marcus. In a recent paper [3] M. Marcus proved a number of interesting inequalities for positive definite Hermitian matrices, including the following: If H and K are positive definite matrices of order n, and X and Y are arbitrary vectors, then

$$(H^{-1}X, X) + (K^{-1}Y, Y) \ge ((H + K)^{-1}(X + Y), (X + Y)).$$

It is shown in Theorem 1 that by making use of the properties of the Schur complement this inequality can be extended to the case where X and Y are arbitrary $n \times m$ matrices. We shall use the notation $A \ge 0$ for a positive semidefinite matrix (p.s.d. matrix), with strict inequality implying that A is positive definite (p.d.). If A and B are p.s.d. matrices, the statement $A \ge B$ will mean $A - B \ge 0$.

THEOREM 1. Suppose H and K are positive definite matrices of order n. Then if X and Y are arbitrary $n \times m$ matrices, the $m \times m$ matrix

(5)
$$Q = X^*H^{-1}X + Y^*K^{-1}Y - (X+Y)^*(H+K)^{-1}(X+Y)$$

is positive semidefinite.

PROOF. Let A and B be the Hermitian matrices of order 2n,

$$A = \begin{pmatrix} H & X \\ X^* & X^*H^{-1}X \end{pmatrix}, \qquad B = \begin{pmatrix} K & Y \\ Y^* & Y^*K^{-1}Y \end{pmatrix}.$$

From (3), it is clear that a nonzero Hermitian matrix is positive semidefinite (definite) if and only if there exists a positive definite principal submatrix whose Schur complement is positive semidefinite (definite). Thus, by inspection, the matrices A and B are positive semidefinite. Then, since the sum of any two positive semidefinite matrices is also positive semidefinite (or definite) we have

$$A + B = \begin{pmatrix} H + K & X + Y \\ X^* + Y^* & X^*H^{-1}X + Y^*K^{-1}Y \end{pmatrix} \ge 0.$$

This proves the theorem, as the matrix Q in (5) is the Schur complement of H+K in A+B.

3. An inequality for the Schur complement.

THEOREM 2. Suppose A and B are Hermitian matrices of order n, partitioned into 2×2 block matrices, $A = (A_{ij})$, $B = (B_{ij})$, i, j = 1, 2, where A_{11} and B_{11} are square of order m. If $A \ge 0$, $B \ge 0$, $A_{11} > 0$, $B_{11} > 0$, then

(6)
$$(A + B/A_{11} + B_{11}) \ge (A/A_{11}) + (B/B_{11}).$$

PROOF. By the previous arguments, $A_{11}+B_{11}>0$, and $A+B\ge 0$. From the definition,

$$(A + B/A_{11} + B_{11}) = (A_{22} + B_{22}) - (A_{21} + B_{21})(A_{11} + B_{11})^{-1} \cdot (A_{12} + B_{12}).$$

By Theorem 1,

$$(A_{21} + B_{21})(A_{11} + B_{11})^{-1}(A_{12} + B_{12}) \le A_{21}A_{11}^{-1}A_{12} + B_{21}B_{11}^{-1}B_{12}.$$

Thus

$$(A + B/A_{11} + B_{11}) \ge (A_{22} + B_{22}) - (A_{21}A_{11}^{-1}A_{12} + B_{21}B_{11}^{-1}B_{12})$$

= $(A/A_{11}) + (B/B_{11}).$

This proves the formula (6), which we now apply to find a new inequality for the determinant of the sum of two positive definite Hermitian matrices.

4. Some determinantal inequalities.

THEOREM 3. Suppose A and B are positive definite Hermitian matrices. Let A_k and B_k , $k = 1, \dots, n$, denote the principal submatrices of order k in the upper left corner of the matrices A and B respectively. Then

(7)
$$|A + B| \ge |A| \left(1 + \sum_{k=1}^{n-1} \frac{|B_k|}{|A_k|}\right) + |B| \left(1 + \sum_{k=1}^{n-1} \frac{|A_k|}{|B_k|}\right).$$

COROLLARY. If A and B are positive definite, and A > B, then

(8)
$$|A + B| > |A| + n|B|$$
.

For the proof of Theorem 3 we need the following lemmas. Lemma 1 is probably well known, as it follows immediately from the Minkowski inequality (4). Lemma 2 follows as a corollary to Lemma 1 and Theorem 2.

LEMMA 1. If A and B are positive definite Hermitian matrices and A > B, then $|A_k| > |B_k|$, $k = 1, \dots, n$.

PROOF. Let A-B=C>0. Then $A_k=B_k+C_k$ $(k=1, \dots, n)$ where A_k , B_k , and C_k are positive definite, since they are principal submatrices of positive definite matrices. Then by (4), $|A_k| \ge |B_k| + |C_k| > |B_k|$ $(k=1, \dots, n)$.

LEMMA 2. If A and B satisfy the conditions of Theorem 2, then

$$|(A + B/A_{11} + B_{11})| \ge |A|/|A_{11}| + |B|/|B_{11}|.$$

PROOF. By Theorem 2 and Lemma 1,

$$| (A + B/A_{11} + B_{11}) | \ge | (A/A_{11}) + (B/B_{11}) |$$

$$\ge | (A/A_{11}) | + | (B/B_{11}) |$$
 by (4)
$$= | A | / | A_{11} | + | B | / | B_{11} |$$
 by (2).

PROOF OF THEOREM 3. We prove the theorem by induction on n. For n=2, we have from (2),

(9)
$$|A + B| = |A_1 + B_1| |(A + B/A_1 + B_1)|.$$

By Lemma 2,

$$|(A + B/A_1 + B_1)| \ge |A|/|A_1| + |B|/|B_1|.$$

Thus, using (4) on the first factor on the right in (9),

$$|A + B| \ge (|A_1| + |B_1|)(|A|/|A_1| + |B|/|B_1|)$$

which proves (7) for n=2.

Now assume (7) holds for matrices of order less than or equal to n-1. Then, if A and B are of order n,

$$|A + B| \ge (|A_{n-1} + B_{n-1}|) |(A + B/A_{n-1} + B_{n-1})|,$$

where, by the inductive assumption,

$$|A_{n-1} + B_{n-1}| \ge |A_{n-1}| \left(1 + \sum_{k=1}^{n-2} \frac{|B_k|}{|A_k|}\right) + |B_{n-1}| \left(1 + \sum_{k=1}^{n-2} \frac{|A_k|}{|B_k|}\right),$$

and, by Lemma 2,

$$|(A + B/A_{n-1} + B_{n-1})| \ge |A|/|A_{n-1}| + |B|/|B_{n-1}|.$$

Thus

$$|A + B| \ge \left(|A_{n-1}| \left(1 + \sum_{k=1}^{n-2} \frac{|B_k|}{|A_k|} \right) + |B_{n-1}| \left(1 + \sum_{k=1}^{n-2} \frac{|A_k|}{|B_k|} \right) \right) \left(\frac{|A|}{|A_{n-1}|} + \frac{|B|}{|B_{n-1}|} \right)$$

$$= |A| \left(1 + \sum_{k=1}^{n-2} \frac{|B_k|}{|A_k|} \right) + |B| \left(1 + \sum_{k=1}^{n-2} \frac{|A_k|}{|B_k|} \right)$$

$$+ \left| \frac{A_{n-1}}{B_{n-1}} \right| \left(1 + \sum_{k=1}^{n-2} \frac{|B_k|}{|A_k|} \right) |B|$$

$$+ \left| \frac{B_{n-1}}{A_{n-1}} \right| \left(1 + \sum_{k=1}^{n-2} \frac{|A_k|}{|B_k|} \right) |A|$$

$$\ge |A| \left(1 + \sum_{k=1}^{n-1} \frac{|B_k|}{|A_k|} \right) + |B| \left(1 + \sum_{k=1}^{n-1} \frac{|A_k|}{|B_k|} \right).$$

This proves Theorem 3.

The corollary follows as an immediate consequence of Lemma 1, since if A > B,

$$|A_k|/|B_k| > 1$$
 $(k = 1, \dots, n)$.

Hence

$$|A + B| \ge |A| \left(1 + \sum_{k=1}^{n-1} \frac{|B_k|}{|A_k|}\right) + n|B| \ge |A| + n|B|.$$

ACKNOWLEDGMENTS. This work was done under contract DA-91-591-EUC-3686 of the U. S. Army with the Institute of Mathematics, University of Basel. The author wishes to thank Professor A. M. Ostrowski for very helpful discussions.

REFERENCES

- 1. D. Crabtree and E. Haynsworth, An identity for the Schur complement of a matrix, Proc. Amer. Math. Soc. 22(1969), 364-366.
- 2. E. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra and Appl. 1 (1968), no. 1, 73-81. MR 36 #6440.
- 3. M. Marcus, An inequality for linear transformations, Proc. Amer. Math. Soc. 18 (1967) 793-797. MR 36 #3811.
- 4. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Allyn & Bacon, Boston, Mass., 1964, p. 115. MR 29 #112.
- 5. M. Marcus and S. Pierce, Extensions of the Minkowski inequality, Linear Algebra and Appl. 1 (1968), no. 1, 13-27. MR 36 #6431.

AUBURN UNIVERSITY