
NOTE ON THE HOMOLOGY OF A FIBER
PRODUCT OF GROUPS

G. s. RINEHART

Abstract. Spectral sequences are derived for the homology and

cohomology of a fiber product of groups with coefficients in a tensor

product module. These generalize the Hochschild-Serre spectral

sequences, and, in the case of a full product of groups, give Kiinneth

formulas. The latter are used to make easy explicit computations of

the homology and cohomology of an arbitrary finitely generated

abelian group acting trivially on an arbitrary module.

We will prove the following:

Theorem 1. For i = l, 2, let fc Bi—>A be a surjection of groups

with kernel K{, and let Mi be a left Bi-module. Let BiXa B%

= {(bi, bi)EBiXBi\fi(bi) -f2(bi)\, and consider Mi®z M2 as a left
BiXa Bi-module in the natural fashion. If N, N' are left A-modules,

let ZA denote the integral group ring of A, and form Tor2"1 (N, N') by

considering N as a right A-module with na — arln. Then, if

Tor: (Mi, M2) = 0, there is a spectral sequence

(1.1) El,q^Hn(BiXAB2,Mi®zM2)

where

FL =   E Tor"(H.(^,, Mi), Ht(Kt, Mi)).

Again, consider Homz(Mi, Mi) as a left BiXa 52-module with

((h, °i)f) (m) = btfQf^m). Then, if Extz(Mi, Mi) = 0, there is a spectral

sequence

E ExtL(#.(#,, Mi), H*(Kt, Mi))
(1.2) ,+<&g

==> E»(Bi Xa Bi, Homz(Jf i, Mi)).

Corollary. If Torf (Mu Mi) = 0, there are Z-split exact sequences

0 ->  E B.(Blt Mi) ®z Ht(B2, Mi) ~* Hn(Bi X B2, Mi ®z Mi)

-»    E    TorZi(H,(Bi, Mi), Ht(B2, Mi)) -»0,
s+t-n-l

and, if Extz(Mi, Mi) =0,
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0 -»    Y,    Extl(H,(Bi, Mi), H'(B2, M2)) -> Hn(Bi X B2, Mt ®z M2)
,+<_n_l

-»  £ Homz(77,(5,, Mi), h\b2, M2)) ->0.

Note that, for 5i = ^4, Mi = Z, (1.1) and (1.2) become the Hochs-

child-Lyndon-Serre spectral sequences. If i7x = Z, B2={e}, (1.3)

and (1.4) give the Universal Coefficient Theorems. When Bi acts

trivially on Mi, (1.3) follows from the Kiinneth formula and the

Eilenberg-Zilber theorem in algebraic topology.

The sequences (1.3) and (1.4) give very easy explicit computations

of the homology and cohomology of an arbitrary finitely generated

abelian group acting trivially on an arbitrary module (cf. [3], [4]),

and we close with these.

For the proof of Theorem 1, we will need the following generaliza-

tions to bifunctors of the spectral sequence associated to the composi-

tion of two functors.

Theorem 2. For i = l, 2, let Ft: C,—>B, be additive functors between

abelian categories with enough projectives. Let A be an abelian

category, and let G: BiXB2—*A be additive in each variable. Suppose

LpG(Fi(Pi), F2(P2)) =0 whenever Pi, P2 are projective and p^l. Then

there is a spectral sequence

(2.1) £ LpG(L.Fi(Mi), LtF2(M2)) => 7„(G(Fi X F2))(Mh M2).
n+t=q

Again, suppose that A has enough projectives, that C is abelian,

and that F: A—>C is additive. Then, if LpF(G(Pi, P2)) =0 whenever

Pi, P2 are projectives and p^ 1, there is a spectral sequence

(2.2) LpF(LqG(Ni, N2)) => Ln(FG)(Nu N2).

Proof. The proof proceeds as in [2, Theorem 2.4.1]. Let us first

consider, in the category Bu a complex U with the property that

Bn(U) and Zn(U) are direct summands of Un, so that U has the form:

I
un ^ Bn(u) © h„(u) e Bn„i(u)

I
£/„_i ̂  Bn_i(U) © Fn_i(7J) © 73„_2(Z7)

I
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Let U' be another such complex in B2. Consider G(U, U'), the com-

plex associated to the double complex \G(UP, Uq)}. This decom-

poses into the direct sum of nine complexes because of the decomposi-

tion of U and U' into three as above. HnG(H(U), H(U'))

= £«+'-" G(H,(U), H,(U')), and the other eight factors have trivial

homology. Hence

(2.3) HnC(U, U') -   £ G(H.(U), Ht(U')).

Now let X be a projective resolution of Mi, and construct, as in

[l, Chapter XVII], a double complex Y such that, for each p, q,

Bq(Yp*) and Zq(Yp*) are direct summands of Ypq, and, for each q,

Y*q and H'ql(Y**) are projective resolutions of Fi(Xg) and HqFi(X)

= LqFi(Mi) respectively. Construct X', Y' for M2 similarly. Let VPq

= 2^«+(-p;.'+c-«G(F„., Y'u-). Then

HP(F.a) =    £   Z.pC(Fi(X..), F,(tf.)) =0        (p > 1)

and, by (2.3),

ff*(FP.)=        S       G(H.,(Y.*),Ht.(Yt.)).
t+t-p;t'+t'—q

Hence one of the two spectral sequences associated to the double

complex Fcollapses to yield Hn(V) =Ln(G(FiXF2))(Mi, M2), and the

other thus becomes (2.1).

To establish (2.2), let Xm be a projective resolution of TV,-, and let

Y be a double complex resolution (in the above sense) for the single

complex associated to \G(XP\ X™)}.

Proof of Theorem 1. For any group C, H„(C, —) is the wth left

derived functor of the functor M'-^Mc, where Mc is the quotient of

M by the submodule generated by {am—m\ w£M, aEC} Q(ZBi)ici

= ZA, so that M'—tMnj preserves projectives when considered as a

functor to ^-modules. Again, ZBi®ZB2 = Z(BiXB2), which is pro-

jective for the subgroup BiXa B2QBiXB2 (consider a coset decom-

position). Hence, since Mk,®a Nk2 = (M®z N)BlxA bv we obtain

from Theorem 2 two spectral sequences with the same limit. The

second of these collapses, because Torf(Mi, M2) = 0, to identify the

limit. The first thus becomes (1.1).

77"(C, —) is the right derived functor of M'-»MC= [mEM\am = m

for every aEC\. Let 7 be an injective Z-module. The right C-module

structure of ZC defines a left C-module structure for Homz(ZC, 7).

The latter is injective, and every injective is a direct summand of one

of this form. (Homz(ZBi, I))K^Homz(ZA, I), so that M^MK'
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preserves injectives. HomZA(MKl, NK*) = (Homz(M, N))b*Xa b*. Hence

the result for cohomology follows analogously.

Proof of Corollary. When A = [e] the spectral sequences (1.1)

and (1.2) become the desired short exact sequences. It remains to

show that the latter split. For » = 0, this is trivial. Let 0—>-M"'—>P

—*Mi—>0 be exact with P a projective Z-Bi-module. We obtain iso-

morphisms Hn(Bi, Mi)2^Hn-i(Bi, Ml) (k^2) and an exact sequence

0->Hi(Bi, Mi) -» H0(Bi, M1) -> H0(BU P).
8 a.

Now H0(Bi, P) =Pbi is Z-projective. Hence so is image a. Hence 8

is split. From theexact sequence 0 = Tor?(Afi, M2)—>M1(g>M2-»P<g>.M2

—>Mi®Mi^>0 we also have a homomorphism H„(BiXB2, Mi®Mi)

-^>Hn-i(BiXB2, Ml®Mi). The diagram

n

£ F„_,(£i, Mi) ® Hi(B2, Mi) -+ Hn(Bi X B2, Mi ® Mi)

:z       i       y       i
E H-i-i(5i, M1) ® Hl(Bi, Mi) -> Hn-1(B1 X B„ Ml ® M2)
i-o 7

commutes up to sign. (In fact, it comes from a morphism of double

complexes of degree (0, —1): In the proof of Theorem 2, choose X

such that X0 = P, and let X" =Xq+i, so that X" is a projective resolu-

tion of M1.) We may assume by induction that y' is split, and this

allows us to find 8: Hn(BiXB2, Mi®Mi)^j^~^ Hn-i(Blt Mi)
®Hl(Bi, Mi) which splits the restriction of y. Moreover, Ho(Bu Mi)

®H„(B2, Mi)^>Hn(Bi XB2, Mi® Mi), when followed by 5, is zero. The
inductive assumption also allows us to find v': Hn(BiXBi, Mi®Mi)

—>Hn(Bi, Mi)®Ho(Bi, Mi) which splits the restriction of 7 and which

gives zero when preceded by E?-i Hn-i(B\, Mi)®Hi(Bi, Mi)

-^Hn(BiXBi, Mi® Mi). By symmetry, there is n:Hn(BiXBi, Mi® Mi)

->H0(Bi, Mi)®Hn(Bi, Mi) which, together with 5, defines a splitting

for 7.

Similarly for cohomology.

Computations for finitely generated abelian groups. Let Z„ be the

group of integers modulo a, and suppose am|am_i| • • • \a\. One

shows, for n ^ 1,
m

Hn(Zai X ■ • • X Z^, Z) = E *(*> n)Z„
«-i

where4>(s, n)= J2?-i<t>(s — 1, 0 (s>l),<£(l, n) = l if n is odd, 0 other-
wise, lZa,=Za,® • • • ®Za, (I times). (The module structure for Z is
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the trivial one.) The proof is by induction on m, starting from the

cyclic group case (m = l). Apply (1.3) to ZttlX(ZaiX • • • XZa„).

Similarly, if Z' = ZX • • • XZ (I times),

Hn(Zl,Z) = ( \z.

Now consider an arbitrary finitely generated abelian group

G = ZaiX ■ ■ • XZa„XZl. Using (1.3), we may combine the two previ-

ous results to obtain

m

H*(G, Z) = £ <b(s, I, n)Za
•-o

where

a0 = 0,   «M,«) = £( )<p(s,t)(s,n^l),   *(<),/,») = (),
<-i \n — 1/ W

and <p(s, I, 0)=0 (s^l).

Finally, if G acts trivially on an arbitrary abelian group M, (1.3)

yields 7z"n(GX{e}, Z®M)=Hn(G, Z)<g>MffiTorf(7z"n_i(G, Z), M),
whence

m m

Hn(G, M) = £ <p(s, I, n)Ma, © £ <b(s, I, n - l)a,M,
8—0 8=1

where Ma, = M/a,M, a,M= \mEM\asm = 0). Similarly, using (1.4),

H"(G, M) = £ <b(s, I, n)a,M © £ <b(s, I, n - l)Ma..
8=0 8-1
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