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In 1958 S. Stein [7] defined a system of n congruences x = a<

(mod bi), 1^-i^n, to be disjoint if no x satisfies more than one of

them. He conjectured that for every disjoint system of n congruences

with distinct moduli there exists an x, l^x^2", satisfying none of

them. P. Erdos [2] proved this with w2n instead of 2" and proposed

the stronger conjecture that any system of n congruence classes not

covering all integers omits some x between 1 and 2". He proved this

with 2" replaced by some constant depending only on n.

Erdos repeated both conjectures at the number theory conferences

in Boulder, Colorado [3], and Pasadena, California [4], in 1963.

Prizes of $10 and $25 were announced at the former for their solution.

The first conjecture was proved by J. Selfridge [6]. In this paper

we prove the second conjecture [l]. That 2" is the best possible fol-

lows from the example *=2*_1 (mod 2*), i^i^n, which covers 1,

2, • • • , 2--1.

The content of our Lemma 1 was discovered independently by

J. Selfridge [S], who has also proved this conjecture.

Theorem. Let ct\, ait ■ ■ ■ ,an,bi,bt, • • • , bn be given, the b's positive.

Suppose there exists an integer xa satisfying none of the congruences

x = at (mod bi),        i = 1, 2, • • • , n.

Then there is such an x0 among 1,2,3, • • • ,2".

Lemma 1. Suppose the above theorem is false. Then for some n there

exist congruences

x = at (mod bi),       i = 1, 2, • • • , »

such that the following three conditions all hold:

(A) If 1 gx ^2", then x satisfies at least one of the congruences; but 0

satisfies none of them.

(B) All the b's are prime.

(C) If k of the congruences have the prime modulus p, then 2k<p.
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Proof. Let us assume ra is the smallest positive integer for which

the theorem fails. Then there exist a^ and bi, l^i^n, such that

each x from 1 to 2n satisfies x = a, (mod bi) for some i, yet if T

= {x: x^at (mod bi), l^i^n}, then T is nonempty. Clearly if xGT

and x=;x' (mod LCM(5i, &2, • • • , in)), then jc'GT; thus J" contains

negative numbers. Let Xo be the greatest nonpositive element of T.

Then the congruences x=at— x0 (mod bi), i=l, 2, • • • , ra, satisfy

condition (A).

Let us now suppose the congruences x = at (mod bi), l^i^n,

satisfy (A). We will make a start on (B) by proving that we may

assume all the moduli are prime powers. Suppose one of the congru-

ences is x=a (mod b), where b is not a prime power. If each prime

power dividing b also divided a, then we would have b\a, in contra-

diction to the second condition of (A). Thus we may assume b = p"q,

where p is prime q> 1, p\q, and p"\a. Then replacing the congruence

x = a (mod b) with x = a (mod pa) yields a new set of congruences for

which (A) still holds. In fact, if p\a the replacement x = a (mod p)

works. (The condition p\a precludes 0 as a solution of the new con-

gruence.) Continuing in this way, we see we can produce n congru-

ences which satisfy (A), such that if x=a (mod b) is one of them, then

b = pa, p prime, and p\a if ct>l.

Assuming our ra congruences are as just described, we will now show

(C) must hold. Let p be a fixed prime, and suppose exactly k of our

congruences have modulus p. Since 0 is a solution of no congruence,

no multiple of p is a solution of any of these k congruences. Thus the

multiples of p between 1 and 2" each must be a solution of at least

one of the remaining ra — k congruences. These all have modulus either

p" with a>l or else b where p\b. The solutions of the former are all

multiples of p by the last paragraph. The latter we replace by the

single congruence modulo pb that is equivalent to the pair of congru-

ences x = a (mod b) and x = 0 (mod p), according to the Chinese re-

mainder theorem. None of the multiples of p are lost as solutions by

this replacement.

We now have ra — k congruences, each of the form x =ap (mod bp),

which include among their solutions p, 2p, • ■ ■ , [2n/p]p, but not 0.

Then the ra — k congruences x = a (mod b) have among their solutions

1, 2, • • • , [2n/p], but still not 0. Recall we assumed ra to be the least

integer for which the theorem fails. The theorem must be true for

n-k, which implies that [2n/p\<2n~k. Thus 2"/p<2n~k, ov2k<p.

This is (C).
Now we return to (B). Suppose p is prime. By what has gone before

we can assume we have congruences of three types

(1) x=a (mod p), where p\a,
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(2) x = a (mod pa), where a>l and p\a,

(3) x = a (mod b), where p\b.

We may assume each a is positive and less than the corresponding

modulus. Since 2v~l'^p for p^2, (C) implies that there exists a0,

1 ̂ a0<p, such that x = a0 (mod p) is not one of our congruences. Let

M=ILb, where b runs through the moduli prime to p. Choose r such

that rM = ao (mod p). We claim that rM is not a solution to any of

the congruences. Our choice of r eliminates the type (1) and type (2)

congruences. Type (3) is out because b\ rM but 0 is not a solution to

any congruence. Suppose now we replace each type (2) congruence

x = a (mod p") with x = a (mod p). The integers 1,2, • • • , 2" are still

all solutions of some congruence; but now so is 0. We have lost (A).

The integer rM is still not a solution, however, since only multiples

of p have been added. Thus condition (A) can be restored by another

shift, exactly as in the beginning of the proof of this lemma. Note

that we have replaced the modulus p" by p. We continue in this way

until all moduli are primes. Thus (B) can be assumed.

Lemma 2. Suppose that Su S2, • • • , St are sets of integers such that

Si consists exactly of kt residue classes modulo bi, i = l, 2, • • • , t, and

that (bi, bj) = 1 if iv^f. Suppose n is a positive integer, and let N be the

number of integers x, 1 ̂ x g 2n, such that x is in none of the S's. Then if

l^s^t,we have

n>i + 2"(i- £ ki/b) n a - ki/bi)
\ 1=1 / i=,+l

- (i + i: **) ri (i + *i).\   i„i  / i_«+i
Proof. For 5 any set, let C(S) be the characteristic function of S.

First we note that 1 - XX i C(5.) ̂  JlU, (1 - COS.)), since the right
side is nonnegative and the left side is nonpositive unless C(5,)

= 0, i = l, 2, • • • , s,'m which case both sides are 1. We see the char-

acteristic function of the set of integers not in any S is

c(~ u  s) = c(h ~s) = n c(~si) = n(i - c(s,))
\   ,-_i    /       \ ,-_i      /    ,=i ,=i

=ri (i - cm) ri (i - c(s<))
i-l «=«+l

§(l- t,C(Si)) II (i-c(s,))
\ i=l / t-J+1

= i - £ C(s{) + £' ctfi^Si)-,
»—1 i.j
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where53' indicates that at most one subscript is ^s.

There are kt elements of 5,- among any bi consecutive integers, so

2"

[2»/bi]ki g £ C(Sd(r) g [2"/bi]ki + ki.
r-1

Since [2n/bi]ki^2"ki/bi<[2"/bi]ki-\-ki, we have ££i C(Si)(r)

= 2"ki/bi+Ei, where |£,-|<fe,-. (Note that £. = 0 if 6,-| 2\) More

generally, the Chinese remainder theorem implies that there are

kikj ■ • • k„ elements of 5,/>\5yf>\ ■ • • (^\SZ among any bib, • • • bz

consecutive integers, so

2"

5] C(Sir\SjC\ ■ ■ -r\S,)(r) = 2«*<*, • • • k./bj>j • ■ • b. + Eij...,,
r=l

where |£,/...2| <kik,- • ■ • kz. Then

AT=   5:c(~U    s)(r)
r=l \ .= 1 /

£ E (l -   ZC(5,) + £'(7(5,^5,)-Vr)
r-l    \ t=I t,j /

1

= 2" -  E 2"£,A- + Z' 2-kikj/bibj -••■ + £
<=i »,y

= 2»(i - e *</*<) n a - ki/bd + £,
\ I—1 / 1=«+1

where

\E\ =   Z£,--Z'-E.7 + •■•!
.=1 i.i I

< £ *,■ + E'*.*i + • • • = (i + 5>.) n (i + ki) - i.

The lemma follows.

Lemma 3. Suppose b, b', r, r', k, and k' are integers such that 0<6

^b', 0^k<r, 0<k'^r', and b—b'+r'^r. Then there exists a positive

integer u such that k-\-u^r, k' — u^Q, and

(1 - k/b)(l - k'/b') ^ (1 - (k + u)/b)(\ - (k' - u)/b').

Proof. For u>0 the last inequality is easily seen to be equivalent

to u^b — k— b'+k'. We define u to be max (1, b—k—b'+k'), making
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this relation automatic. If u = \, the first two inequalities are trivial.

Otherwise k+u = b-b'+k'^b-b'+r'^r, while k'-u = b'-b + k^O.

Lemma 4. If the theorem is false, then it fails for some «<20.

Proof. Suppose not. Then there exists «^20 and n congruences

such that the conditions of Lemma 1 hold. Suppose kt congruences

have modulus pi, pi<p2< • • • <pt- By Lemma 2 (applied to the

last t — s rather than the first 5 factors) we will get a contradiction if

we can show

(*) 2- (i - i: ki/p) jid- kitp,) £ (i + s *,) ri(i +*••)
\ »=s+l /   «'-l \ i=«+l      /    >=1

for some s, 1 ̂  5 ̂  t. We shall take 5 = min ([n/3 ] — 1, t — 1). The right

side of (*) has s + 1 factors. Since n= £&,-, their sum is n-\-s-\-\. The

expression is maximized when all the factors are equal. Thus

(n + s + 1V+1     (n + n/3\n'3
(right side of (*)) 5i (—-——J     :g ̂  j      = 4»/».

Here we used that (1+n/z)* is an increasing function of z.

It can be seen from inspecting a table of primes that ir(w — [n/3 ] +1)

^ [n/3] for small values of «^20; for larger n it follows from known

estimates for iv(n). Thus if s= [n/3] — 1, we have

£ £» = « — 2 *»■ = w — [w/3] + 1 2a (the [w/3]rd prime) < p\nm-
t=.»+i «=i

If we define kQ= XX[n/3] &. and po = Pin/3], we have

(1) (left side of (*)) 2; 2" JT (1 - *«/*<>,

where k0<po, and &,i£ [log2 pi] for * = 1, 2, • • • , 5 by condition (C)

of Lemma 1. If s = t — 1 defining po = pt and k0 = kt also gives (1).

For convenience, we introduce a new notation. Let mv = ki if p=pi

and 0 otherwise. Then

ri (i - k4 pi> = n (i - «*/#)■
i—0 p

Since £j &i^20, the conditions ko<po and &,-g [log2 />,■] for i^l

imply p0^ 13. In particular, w2 = 0, w3^l, m&^2, m7^2, mu^3, and

m13^12. If p0 = 13, then » = 20 and

II (l-wp/^) = (l-l/3)(l-2/5)(l-2/7)(l-3/ll)(l-12/13).
p
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In this case

2" II (1 - mp/P) ~ 4"'3 = 22«'3(2"'3 II (1 - mjp) - l\

= 24°/3(2I0+2/3/1001 - 1) > 0,

which implies (*). Clearly 2nl3J\p(l—mp/p)>l is sufficient to imply

(*) in general. We will show that for ra>20

II (1 - mjp)

^ (1 - 1/3)(1 - 2/5)(l - 2/7)(l - 3/11) (1 - 12/13)<"-8"12.

Then

2»/3jJ (J _ mjp) ^ 2"'3(16/1001)13-(''-20)/l!!

= K exp ra(ln 16 - In 13)/12.

We have already seen this exceeds 1 for ra = 20; it is clearly increasing.

Thus it suffices to prove (**).

Our method will be successive application of Lemma 3 to pairs

of factors of Ilp(l— mp/p). This lemma says that under cer-

tain circumstances (l—m/p)(l—m'/p') may be replaced by

(1 — (m+u)/p)(l — (m'— u)/p') without increasing the product. Al-

though Lemma 3 only guarantees a positive integer u, the operation

may be repeated until m-\-u reaches a specified limit (namely, r) or

m'— m = 0. It is easily checked that if b'2zb>2, then b — b'-\-r'^r

whether r and r' are defined by

1°    r = b-\,        r' = b'-l,

2°    r=[log2&],        r'=[log2&'],    or, in case b< 13,

3°    r=[\og2b],        r' = b'-10.

First we use Lemma 3 with b = 13, b' = p0, k = mK, k' = k0, and r and

r' as in 1°. According to Lemma 3 we can increase k and decrease k'

(by the same amount) until either k-\-u = r=l2 or k'—u = 0. Since

k = mu— [log2 13] =3, we can guarantee this way that k' — u^p0 —10.

In order to avoid a mess we redefine our m's so as to denote our new

product again by HP(1— mp/p). Now mp^p —10 for p = po, Wi3 = 12,

and mp=^ [log2 p] for all other p. As before, 53p wp = ra.

Now if mp< [log2 p] for any p< 13, we apply Lemma 3 to increase

mp to equal [log2 p] by taking away from mp for p> 13. This is justi-

fied by taking r and r' as in 2° if the larger prime is not po, and 3° if

the larger prime is p0. Since w^20 all the primes less than 13 can be
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"filled up" this way. If we again redefine our m's we now have the

product

II (1 - mp/p)

- (1 - 1/3)(1 - 2/5)(l - 2/7)(l - 3/11) II (1 - t»p/P),

where mp^p — l for p^ 13.

Finally we use Lemma 3 with r and r' as in 1° to stuff any remaining

mp's with p> 13 down into 13. If mn gets "filled up" (hits 12) we start

a new factor of the form (1 — 7/13) by taking k = 0 in Lemma 3. This

gives

(1-1/1/3)(1-2/5)(1-2/7)(1-3/11)(1-12/13)[<"-8"12](1-t/13),

where 12 [(» — 8)/12]+7 = « — 8, 7<12. Since it is easy to check that

l-7/13^(l-12/13)?'12, (**) follows.

Of course it remains to show the theorem is true for «<20. This

may be checked by more special arguments.
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