ANY » ARITHMETIC PROGRESSIONS COVERING
THE FIRST 2* INTEGERS COVER ALL INTEGERS

R. B. CRITTENDEN AND C. L. VANDEN EYNDEN!

In 1958 S. Stein [7] defined a system of # congruences x=a;
(mod b;), 1 £i=<n, to be disjoint if no x satisfies more than one of
them. He conjectured that for every disjoint system of # congruences
with distinct moduli there exists an x, 1 <x =2", satisfying none of
them. P. Erdés [2] proved this with #2" instead of 2* and proposed
the stronger conjecture that any system of # congruence classes not
covering all integers omits some x between 1 and 2. He proved this
with 2" replaced by some constant depending only on .

Erdés repeated both conjectures at the number theory conferences
in Boulder, Colorado [3], and Pasadena, California [4], in 1963.
Prizes of $10 and $25 were announced at the former for their solution.

The first conjecture was proved by J. Selfridge [6]. In this paper
we prove the second conjecture [1]. That 2" is the best possible fol-
lpws from the example x=2""! (mod 2¢), 1=<7<#, which covers 1,
2, -, 271,

The content of our Lemma 1 was discovered independently by
J. Selfridge [5], who has also proved this conjecture.

THEOREM. Let a1, @y, + « * , Qn, b1, b, - + -, b, be given, the b's positive.
Suppose there exists an integer x, satisfying none of the congruences
x = a; (mod &,), 1=1,2,.-- m.
Then there is such an xo among 1,2, 3, - - -, 27,

LeEMMA 1. Suppose the above theorem is false. Then for some n there
exist congruences

x = ¢; (mod b;), i=12,--+,n

such that the following three conditions all hold:

(A) If 1 =x <27 then x salisfies at least one of the congruences; but 0
satisfies none of them.

(B) All the b's are prime.

(C) If k of the congruences have the prime modulus p, then 2% < p.
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Proor. Let us assume 7 is the smallest positive integer for which
the theorem fails. Then there exist a; and b;, 1<7=<#, such that
each x from 1 to 2" satisfies x = a; (mod b;) for some i, yet if T
= {x: x#a; (mod b;), 1§z’§n}, then T is nonempty. Clearly if x&T

and x=x" (mod LCM(by, by, - + -, b,)), then x’ET'; thus T contains
negative numbers. Let xo be the greatest nonpositive element of T
Then the congruences x=a;—x, (mod b;), 1=1, 2, - - -, n, satisfy

condition (A).

Let us now suppose the congruences x=a; (mod b;), 1=Z:1=n,
satisfy (A). We will make a start on (B) by proving that we may
assume all the moduli are prime powers. Suppose one of the congru-
ences is x=a (mod b), where b is not a prime power. If each prime
power dividing b also divided «, then we would have b| a, in contra-
diction to the second condition of (A). Thus we may assume b =p2g,
where p is prime ¢>1, plg, and p>}a. Then replacing the congruence
x=a (mod b) with x=a (mod p*=) yields a new set of congruences for
which (A) still holds. In fact, if p/a the replacement x=a (mod p)
works. (The condition pfa precludes 0 as a solution of the new con-
gruence.) Continuing in this way, we see we can produce # congru-
ences which satisfy (A), such that if x=a (mod b) is one of them, then
b=pe, p prime, and p]a ifa>1.

Assuming our z congruences are as just described, we will now show
(C) must hold. Let p be a fixed prime, and suppose exactly & of our
congruences have modulus p. Since 0 is a solution of no congruence,
no multiple of p is a solution of any of these k congruences. Thus the
multiples of p between 1 and 2" each must be a solution of at least
one of the remaining # — k congruences. These all have modulus either
p= with @>1 or else b where p}b. The solutions of the former are all
multiples of p by the last paragraph. The latter we replace by the
single congruence modulo pb that is equivalent to the pair of congru-
ences x=a (mod b) and x=0 (mod p), according to the Chinese re-
mainder theorem. None of the multiples of p are lost as solutions by
this replacement.

We now have #—k congruences, each of the form x =ap (mod bp),
which include among their solutions p, 2p, - - -, [27/p]p, but not 0.
Then the #—k congruences x=a (mod b) have among their solutions
1,2, - - -, [2/p], but still not 0. Recall we assumed 7 to be the least
integer for which the theorem fails. The theorem must be true for
n—k, which implies that [2"/p]<2n*. Thus 27/p <2"*, or 2¢<p.
This is (C).

Now we return to (B). Suppose p is prime. By what has gone before
we can assume we have congruences of three types

(1) x=a (mod p), where p/a,
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(2) x=a (mod p2), where a>1 and pla,

(3) x=a (mod b), where p}b.
We may assume each a is positive and less than the corresponding
modulus. Since 2712 p for p=2, (C) implies that there exists a,
1=<ao<p, such that x=a, (mod p) is not one of our congruences. Let
M =I1b, where b runs through the moduli prime to p. Choose 7 such
that M =ao (mod p). We claim that M is not a solution to any of
the congruences. Our choice of » eliminates the type (1) and type (2)
congruences. Type (3) is out because b| M but 0 is not a solution to
any congruence. Suppose now we replace each type (2) congruence
x=a (mod p*) with x=a (mod p). The integers 1, 2, - - -, 27 are still
all solutions of some congruence; but now so is 0. We have lost (A).
The integer M is still not a solution, however, since only multiples
of p have been added. Thus condition (A) can be restored by another
shift, exactly as in the beginning of the proof of this lemma. Note
that we have replaced the modulus p* by p. We continue in this way
until all moduli are primes. Thus (B) can be assumed.

LeEMMA 2. Suppose that S, Sz, + -+, S are sets of integers such that
S; consists exactly of k; residue classes modulo b;, i=1,2, - - -, t, and
that (b;, b;) =1 if 154j. Suppose n is a positive integer, and let N be the
number of integers x, 1 Sx 22", such that x is in none of the S's. Then if
1 <s=¢, we have

N>1+42n (1 - Z ka/bf) fI (1 — k:/b))

=1 =341
s t
—Q+-Zk)II (1 + k).
=1 t=8+1

Proor. For S any set, let C(S) be the characteristic function of S.
First we note that 1 — > ¢_, C(S:) = [5-, (1 —C(S))), since the right
side is nonnegative and the left side is nonpositive unless C(S;)
=0,2=1, 2, - - -, s, in which case both sides are 1. We see the char-
acteristic function of the set of integers not in any S is

c(~U s)=c(n ~s)=1I cevso =TT - cis

i=1 t=1

M a-csy I a-csd

sl $=s41
> (1— ﬁ;cm) II (= cs))
i=1 =341
1= 3OS + X CENS) — - - -

tmal i
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where >’ indicates that at most one subscript is <s.
There are k; elements of S; among any b; consecutive integers, so

2”
[2%/bi]ks < D5 CS)(@) < [2°/b]ki + k.
r==]
Since [27/b:]k:S27ki/b;< [27/bi]kitk;, we have D2, C(Si)(r)
=2"k;/b;+E;, where |E;| <ki. (Note that E;=0 if b,/2") More
generally, the Chinese remainder theorem implies that there are
kikj - - - k, elements of S;N\S;MN - - - NS, among any bb; - - - b,
consecutive integers, so
2”
2CENS;N - - NS)(r) = 27kikj - - - BJbib; - - - by + Eiju.ay

r=1

where | E;;....| <kik; - - - k.. Then

N = zz“:C(Nl‘J Si)(’)

r=1 i=1

z2 (1— Y CS)+ X CEsiNS) — - .)(,)

r=1 =1 1,7
t
= 2% — 3 2ki/b; + D, 2*kik;/bib; — - - -+ E
i=1 [ %]
s t
f=] =541
where
t
| E| = ZE:'—Z'EH‘F""
i=1 1,5
t 8 t
< kit kb4 = (1+ Zki) T @ +%&)—1.
i=1 i =1 f=at1

The lemma follows.

LemMA 3. Suppose b, b, r, v, k, and k' are integers such that 0<b
SV,05k<r, 0Kk =, and b—b"+1' =r. Then there exists a positive
integer u such that k+u=<r, k' —u=0, and

(I —k/0)A - k)2 A —(k+u)/b)A - (F —u)/b).

Proor. For #>0 the last inequality is easily seen to be equivalent
tou=b—k—0b'+k'. We define u to be max (1, b —k—b'+%’), making
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this relation automatic. If # =1, the first two inequalities are trivial.
Otherwise k+u=b—b'+k Zb—b'+7'<r, while ¥’ —u=0'"—b+k=0.

LEMMA 4. If the theorem is false, then it fails for some n<20.

ProoF. Suppose not. Then there exists #=20 and » congruences
such that the conditions of Lemma 1 hold. Suppose k; congruences
have modulus p;, p1<p:< -+ + <p:.. By Lemma 2 (applied to the
last ¢t —s rather than the first s factors) we will get a contradiction if
we can show

t 8 12 s
o »(1- 2 wp) T1G - b/p) 2 (1+ = &) 110 +8
=841 =1 T=s4-1 i=1
for some s, 1 s <t. We shall take s=min ([#/3] -1, t—1). The right
side of (*) has s-+1 factors. Since n= Zk;, their sum is n+s-+1. The
expression is maximized when all the factors are equal. Thus

(right side of (*)) < (ﬁ__iﬂ)m < (M)m = 4nis,
s+1 n/3

Here we used that (14#/2)? is an increasing function of z.

It can be seen from inspecting a table of primes that = (n — [#/3]+1)
< [n/3] for small values of 7= 20; for larger # it follows from known
estimates for w(n). Thus if s=[#/3]—1, we have

> ki=n— 2, ki< n—[n/3] +1 < (the [n/3]rd prime) < pass).

t=s+1 t=1

If we define ko= D .13 ki and po=piasa, we have

1) (left side of (*)) = 2= T (1 — /99,
=0
where ko< po, and &, < [log; pi] for i=1, 2, - - -, s by condition (C)
of Lemma 1. If s=t—1 defining po=p:, and ko=~ also gives (1).
For convenience, we introduce a new notation. Let m, =k, if p=p;
and 0 otherwise. Then

ITQ = &/p) = T A — my/p).
t=0 P
Since Y 3 k=20, the conditions ko<, and k; < [log, p:] for i=1
imply po=13. In particular, m;=0, m; <1, ms <2, m; <2, m; £3, and
m13 <12. If pp=13, then n=20 and
IT (t=ma/p)=(1=1/3)(1=2/5)(1—2/T)(1—3/11)(1—12/13).

P
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In this case

2 I1 = my/p) = ot = 2 (28 L (= my/) = 1)
b4 v
= 210/3(210+213/1001 — 1) > 0,

which implies (*¥). Clearly 2*3]],(1 —m,/p) >1 is sufficient to imply
(*) in general. We will show that for n>20

H (1 —my/p)

9 = (1—1/3)(1 —2/51 — 2/T)(1 — 3/11) (1 — 12/13) =112,

Then
223 1T (1 — m,/p) = 2713(16/1001)13~ (=203 /12
Y4

= K exp #(ln 16 — In 13)/12.

We have already seen this exceeds 1 for n =20; it is clearly increasing.
Thus it suffices to prove (**).

Our method will be successive application of Lemma 3 to pairs
of factors of [],(1—m,/p). This lemma says that under cer-
tain circumstances (1—m/p)(1—m’/p’) may be replaced by
(A —(m+u)/p)(1 —(m’—u)/p’) without increasing the product. Al-
though Lemma 3 only guarantees a positive integer u, the operation
may be repeated until m+u reaches a specified limit (namely, ) or
m’ —u=0. It is easily checked that if ’=b>2, then b—b0'+r"=r
whether 7 and 7’ are defined by

1° 7=b-—-1, '=p"—1,

20 7= [log, b], r' = [log, '], or, in case b<13,

3% r={log; ], r'=0b'—10.

First we use Lemma 3 with b =13, b’ = p,, k =m3, k' =k, and r and
7" as in 1° According to Lemma 3 we can increase k and decrease &’
(by the same amount) until either #+u=7r=12 or k’—u=0. Since
k=my3 < [log, 13] =3, we can guarantee this way that ' —u < po—10.
In order to avoid a mess we redefine our m’s so as to denote our new
product again by [[,(1 —m,/p). Now m, <p—10 for p = p,, miz <12,
and m, < [log, p] for all other p. As before, _, m,=n.

Now if m, < [log, p] for any p <13, we apply Lemma 3 to increase
m, to equal [log, p] by taking away from m, for p>13. This is justi-
fied by taking r and 7’ as in 20 if the larger prime is not po, and 39 if
the larger prime is po. Since 7 =20 all the primes less than 13 can be
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“filled up” this way. If we again redefine our m’s we now have the
product

H (1 - mp/?)
=(1-1/3)(1 —2/51 = 2/71 = 3/11) TT (0 — m,/p),

2213
where m,<p—1 for p=13.

Finally we use Lemma 3 with » and ' as in 1° to stuff any remaining
my's with p > 13 down into 13. If m;; gets “filled up” (hits 12) we start
a new factor of the form (1 —v/13) by taking #=0 in Lemma 3. This
gives

(1—1/1/3)(1—2/5)(1—2/T)(1 = 3/11) (1 —12/13)le=—9)1121(1 — /13),

where 12[(n—8)/12]+v=n—8, v<12. Since it is easy to check that
1—vy/13= (1 —12/13)7/12, (**) follows.

Of course it remains to show the theorem is true for # <20. This
may be checked by more special arguments.
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