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Abstract. The oscillatory and nonoscillatory behavior of the

nonlinear second order differential equation (1) x"+p(t)f(x) =0 is

related to that of (2)x x"+\p(l)x = 0, X>0. Under certain condi-

tions on p(t) and/Oe) it is shown that all solutions of (1) are oscil-

latory if (2)x is oscillatory for all X>0. In contrast to most of the

literature on this subject, no sign or integrability conditions on p(t)

are explicitly assumed.

Consider the second order nonlinear differential equation

(1) x" + p(t) f(x) = 0

where p(t)EC[0, +•») and/(x)eC(1)(- <*>, +»), with

f(x)
(2) f'(x) ^ -±— > 0    for x y± 0.

x

As a special case we have

(3) x" + p(t)x2n+1 = 0.

In case p(t) is eventually positive, oscillation and nonoscillation

criteria for (1) and (3) have been extensively developed. (See [l] and

the bibliography therein for the nonlinear case. Willett in [2] has an

extensive bibliography for the case when (1) is linear.) However,

much less is known for the nonlinear case when p(t) is allowed to be

negative for arbitrarily large values of I. It is the purpose of this paper

to relate the oscillatory behavior of (1) with that of the linear equation

(4)x x" + Xp(t)x = 0,        X > 0,

which, presumably, is easier to handle. We shall restrict attention to

solutions of (1) which exist on some ray [T, + <») where T may de-

pend on the particular solution. We shall at various times assume

that the following condition holds:

(5) lim inf J   p(s)ds > 0   for all large T.
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For the case when/(x) =x2n+1, our main result generalizes a theorem

due to Utz [4] who assumes p(t)^0 and a theorem due to Waltman

[5] who has shown that all solutions of (3) oscillate provided the

following condition holds:

/CO

p(s)ds = + 00.

For n = 0 we have by the well-known Fite-Wintner Theorem (see [6])

that condition (6) implies all solutions of (3) oscillate. In fact, we see

that (4)x is oscillatory for all X>0.

Lemma 1. Let u(t) be a nonoscillatory solution of (1) on [T, + °°)

and let condition (5) hold. Then for all large t we have u(t)u'(t)>0.

Proof. Assume, to be specific, that u(t) >0 for /=■ Ti, Fi=g T. Obvi-

ous modifications are valid when u(t)<0. If the lemma is not true,

then either u'(t) <0 for all large / or u'(t) oscillates. In the former case

we may suppose that Fi is sufficiently large so that

I   p(s)ds ̂  0    ioxt^Ti

and u'(t) <0 for £=■ Tx. Hence, we have

f 'p(s)f(u(s))ds = /(«(/))  f  p(s)ds
J Ti J Tl

(7)

-  f f'(u(s))u'(s)  f'p(o)do-ds ^ 0,      t ^ Ti.
J Ti J Ti

Now integrating (1) we have by (7) that u'(t)^u'(Ti)<0, t^Ti,

which contradicts the fact that u(t) is nonoscillatory.

If u'(t) oscillates, let Tn—*+ » be such that m'(F„)=0. For t^Ti

we define

(8) v(t) = - u'(l)/f(u(l)),

and differentiating, we get

(9) v'(l) = p(t) + w(t),

where

w(t) = (v(t))2f'(u(t))^0,     t^Ti.

Since v(Tn) =0 we integrate (9) between F„ and F„+i and sum on n

to get an immediate contradiction to (5).
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Theorem 2. Let (4)x be oscillatory and let u(t) be a nonosdilatory

solution of (1) with u(t)u'(t) >0for all t^ T. Then

f(u(t))
(10) lim li_lli ^ x.

(->»    m(0

Proof. Let g(x) =f(x)/x. We note that condition (2) implies that

the limit in (9) exists (possibly infinite). If the theorem is not true,

we may assume g(u(t)) 2:\ for all t^ T. Let z(t) be the solution of (4)x

satisfying z(T) =0, z'(T) = 1, and let Ti> T be the first zero of z'(t) so

thats'(0>0on [T, Ti). Then

(11) f '(gMO) - x)(z')2^ § o

so integrating by parts we get

f   \g{<l)) - X)(z')2dt
J J,

/> Ti r> Tl
pz2(g(u(t)) - X)dt -  I      zz'g'(u(t))u'dt

^ X pz2(g(u(t)) - X)dt

since the integrand zz'g'(u(t))u' is nonnegative on [F, Fi] by condi-

tion (2). But

f   \z2(g(u(t)) - X)dt

rTl  z

=  I       — (pzf(u(l)) - Xpzu)dt
J T U

rT>  z
=   I       — (z'u — u'z)'dt

J T U

= - u'(Tl)(z(Ti))2/u(Ti) -  f  \(z'u - u'z)/u)2dt < 0,

and this is a contradiction.

Lemma 1 along with Theorem 2 imply the following:

Corollary 3. Let (4)x be oscillatory and assume condition (5) holds.

Then all nonos dilatory solutions of (3) are bounded. In fact, if u(t) is

a nonoscillatory solution of (3), then
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lim  | u(t)\   = T g (X)1'2".

Theorem 4. Assume (4)x is oscillatory for all\>0 and assume condi-

tion (5) holds. Then all solutions of (1) oscillate.

Proof. If not, let u(t) be a nonoscillatory solution of (1). Lemma 1

and Theorem 2 imply u(t) satisfies u(t)u'(t)>0 for all large t and

limt-.,, g(u(t))=0. But this is a contradiction since d(g(u(t)))/dt^0

by (2). This proves the theorem.

Consider the following somewhat weaker condition than (5):

There exists a sequence Tn—»+ » such that

(5*) f p(s)ds =■ 0,        I = Tn.
•J Tn

The proof of Lemma 1 and Theorem 2 imply

Corollary 5. If p(t) satisfies condition (5*), and if (4)x is oscilla-

tory for all\>0, then u'(t) oscillates for all solutions u(t) of (1).

Examples. Willett [3] has shown that (4)x is oscillatory for all

X>0 where p(t) =f sin t and n> —1. Thus, Corollary 5 implies that

u'(t) oscillates for all solutions u(t) of (1) if -Ktj^O.

For the equation

(12) x" + (ptr2 + titr1 sin vt)x = 0

results in [3] imply oscillation if p>\ — \(ji/v)2 and nonoscillation if

p<\ — KmA)2- Moreover, p(t) satisfies condition (5) if p>ju/f = 0.

Letting p=v and p> 1 it follows that x"+\p(t)x = 0 is oscillatory if

X>X0 = (p2+h)ll2—P so that all nonoscillatory solutions of (3) satisfy

\u(t)\ ^(\0)ll2n for all large t by Corollary 3.
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