OSCILLATION THEOREMS FOR SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

LYNN ERBE!

ABsTRACT. The oscillatory and nonoscillatory behavior of the
nonlinear second order differential equation (1) x”'+p(£)f(x) =0 is
related to that of (2)\ " +Ap()x=0, A>0. Under certain condi-
tions on p(¢) and f(x) it is shown that all solutions of (1) are oscil-
latory if (2)\ is oscillatory for all A>0. In contrast to most of the
literature on this subject, no sign or integrability conditions on p(¢)
are explicitly assumed.

Consider the second order nonlinear differential equation

(1) o+ p()f(x) =0
where p(t) EC[0, + =) and f(x) ECPV(— w, + ), with
2) fl(x) = f—(f)— >0 forx 0.

x

As a special case we have
@3) " + p(f)at+t = 0.

In case p(t) is eventually positive, oscillation and nonoscillation
criteria for (1) and (3) have been extensively developed. (See [1] and
the bibliography therein for the nonlinear case. Willett in [2] has an
extensive bibliography for the case when (1) is linear.) However,
much less is known for the nonlinear case when p(¢) is allowed to be
negative for arbitrarily large values of ¢. It is the purpose of this paper
to relate the oscillatory behavior of (1) with that of the linear equation

(4)x 2+ Ap(Hx =0, A>0,

which, presumably, is easier to handle. We shall restrict attention to
solutions of (1) which exist on some ray [T, + «) where T may de-
pend on the particular solution. We shall at various times assume
that the following condition holds:

t
5) liminf | p(s)ds > 0 for all large T.
T

{— o
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For the case when f(x) =x2"*!, our main result generalizes a theorem
due to Utz [4] who assumes p(£) 20 and a theorem due to Waltman
[5] who has shown that all solutions of (3) oscillate provided the
following condition holds:

©) [ s = + .

For n=0 we have by the well-known Fite-Wintner Theorem (see [6])
that condition (6) implies all solutions of (3) oscillate. In fact, we see
that (4), is oscillatory for all A> 0.

LEMMA 1. Let u(t) be a nonoscillatory solution of (1) on [T, + =)
and let condition (5) hold. Then for all large t we have u(t)u'(t) > 0.

Proor. Assume, to be specific, that #(t) >0 for t= Ty, 712 T. Obvi-
ous modifications are valid when u(t) <0. If the lemma is not true,
then either #’(¢) <0 for all large ¢ or #’(¢) oscillates. In the former case
we may suppose that 73 is sufficiently large so that

t
p(s)ds =z 0 fort= T,
T,
and #’(¢) <0 for t= T;. Hence, we have

P()f(u(s))ds = f(u(t)) . p(s)ds
(7) 1 ‘ 1 .
—f I (u(s))u'(s) plo)deds 20, t= T

Now integrating (1) we have by (7) that #'(¢t) £«/(T1) <0, t= Ty,
which contradicts the fact that «(¢) is nonoscillatory.

If #'(¢) oscillates, let T,—+ » be such that «'(T,)=0. For t=Th
we define

(8) o(t) = — ' (O)/f(u(),
and differentiating, we get

©) V(1) = p() + (),
where

w(t)=@®)f' )20, =T

Since 9(T,) =0 we integrate (9) between T, and T»41 and sum on 7
to get an immediate contradiction to (3).
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THEOREM 2. Let (4)x be oscillatory and let u(t) be a nonoscillatory
solution of (1) with u(t)u’(t)>0 for allt=T. Then
u(t
(10) lim & =X
t— u(t)

Proor. Let g(x) =f(x)/x. We note that condition (2) implies that
the limit in (9) exists (possibly infinite). If the theorem is not true,
we may assume g(u(t)) 2\ for all £= T Let z(¢) be the solution of (4)\
satisfying 2(T) =0, 2'(T) =1, and let T > T be the first zero of '(¢) so
that z’(f) >0 on [T, T3). Then

T1

(11) (g(u(®)) — N ()%t 2 0
T
so integrating by parts we get

T1
(g(u(®)) — N)(2')%dt

T1

T:
= 222 (g(u(f)) — N)dt — f 22'g' (u(t))w' dt

T
T

SA ) p2(g(u(®) — Nat

since the integrand zzg’(u(f))»’ is nonnegative on [T, T:] by condi-
tion (2). But

T1
. p2*(g(u(t)) — Nt

T1 P4
-  (paf(u) = Apan

Vi 2
= f — (Fu — u'z)'dt
T U
= — w/(T)(3(T1)Y/u(Ty) — Tl((z’u — u'z)/u)¥dt < 0,

T

and this is a contradiction.
Lemma 1 along with Theorem 2 imply the following:

COROLLARY 3. Let (4)) be oscillatory and assume condition (5) holds.
Then all nonoscillatory solutions of (3) are bounded. In fact, if u(t) is
a nonoscillatory solution of (3), then
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lim ‘ u(t)l =y = (\)V2,
t—
THEOREM 4. Assume (4)\ is oscillatory for all N> 0 and assume condi-
tion (5) holds. Then all solutions of (1) oscillate.

Proor. If not, let #(¢) be a nonoscillatory solution of (1). Lemma 1
and Theorem 2 imply u(¢) satisfies u(¢)u'(t) >0 for all large ¢ and
lime,e g(u(¢)) =0. But this is a contradiction since d(g(u(t)))/dt=0
by (2). This proves the theorem.

Consider the following somewhat weaker condition than (5):
There exists a sequence 7,—+ « such that

5%) f p)ds 20, (=T
TVI

The proof of Lemma 1 and Theorem 2 imply

COoROLLARY 5. If p(t) satisfies condition (5*), and 1f (4)x 1s oscilla-
tory for all N> 0, then u'(t) oscillates for all solutions u(t) of (1).

ExampLEs. Willett [3] has shown that (4), is oscillatory for all
A>0 where p(¢) =t sin ¢t and > —1. Thus, Corollary 5 implies that
u’(t) oscillates for all solutions u(t) of (1) if —1<n=0.

For the equation

(12) 2 4+ (pt~2 + utlsinvt)x = 0

results in [3] imply oscillation if p>%—2%(u/»)? and nonoscillation if
p<i—1(u/v)2. Moreover, p(t) satisfies condition (5) if p>u/r=0.
Letting u=» and p>1 it follows that x”"4+Np(¢)x =0 is oscillatory if
A>No=(p2+1)!/2—p so that all nonoscillatory solutions of (3) satisfy
'u(t)| =< (N\o) /2 for all large ¢ by Corollary 3.
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