
A SHORT PROOF OF CURRY'S NORMAL
FORM THEOREM

ROGER HINDLEY AND BRUCE LERCHER1

In Chapter 6 of their book [l] Curry and Feys define a notion of

reduction (strong reduction) for the extensional theory of equality

in combinatory logic, show [l, Theorem 3, p. 221 ] that strong reduc-

tion has the Church-Rosser property, and define a notion of normal

form in analogy with the corresponding concept in lambda-conver-

sion. Curry's normal form theorem [l, Theorem 7, p. 230] asserts

that if a term ("ob") of combinatory logic is in normal form, it is

irreducible, so that if X has normal form X*, then X reduces to X*

by a process (namely, strong reduction) that cannot be continued

further.

Curry's proof of his theorem in [l] is quite long and difficult (see

[3, p. 228] for comment). There is another lengthy proof in the cur-

rent draft of [2] and the first author has discovered a proof using his

axiomatization of strong reduction [3]. The present proof follows the

same general line as the latter proof, but it is considerably shorter

and simpler.

Definitions and notation are as in [3], except for the symbol E>

which is used here for weak reduction.

1. Substitution and abstraction. The first result is essentially from

[4, Lemmas 1 and 4]. The proofs, by induction, are easy.

Lemma 1. Let P be a redex scheme. Then:

(a) P contains at most one occurrence of each meta-variable;

(b) If M is a meta-variable occurring in P, there is an N such that

NM occurs in P;

(c) If P is not basic (i.e. is the result of at least one application of

scheme (viii) of [3, p. 233]), then P is weakly irreducible;

(d) If P is not basic, then either P = SPiP2 or P=SPi where Pi con-

tains at least one occurrence of an atomic combinator.

The hypotheses of the next lemma are, in essence, the properties of

redex schemes asserted in Lemma 1(a), (b), and (c).
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Lemma 2. Suppose that P is weakly irreducible, that P contains at

most one occurrence of each meta-variable, and that either P is itself a

meta-variable, or the occurrence of any meta-variable M in P is in a com-

ponent NM of P.   If  [X/A][Y/B][Z/C]P>R, then  R=[X°/A]
■ [Y°/B] [Z°/C]P, where Xt>X°, Y> Y°, and Z> Z°.

Proof. The proof is by induction on P, with three basic clauses:

P=M; P=NM, where A does not contain any meta-variables; and

P does not contain any meta-variables. The induction step, P=PiP2,

uses the fact that no substitution instance of P is itself a weak redex.

The next result is Lemma 11 of [3].

Lemma 3. Let P be a redex scheme and suppose that U, V, W do not

contain    x.     Then     [U/A] [V/B][W/C][x]Pijk= [x][U/A] [V/B]

■ [W/C]Pijk^ [x] [U*/A] [Vi/B] [Wk/C]P.

The final preliminary result is an immediate consequence of the

Church-Rosser Theorem for weak reduction (see, e.g. [2], or [5,

Theorem 12]). It can also be proved directly by induction on Y.

Lemma 4. If Y is weakly irreducible, X= [x] Y, and Xx\> Q, then

Q>Y.

2. The normal form theorem. By [3], X is irreducible if it contains

no redexes, so Curry's theorem may be stated as follows.

Normal form theorem. If X is in normal form, it contains no

redexes.

Proof. The proof is by induction on the definition of normal form.

(1) If X=x, then X contains no redex by Lemma 1(b) or (d).

(2) If X=xXi ■ • • Xn, with Xi, ■ ■ ■ , Xn in normal form, assume

by induction that Ai, • • - , X„ contain no redexes. The only pos-

sible redexes in X then have x at the head, which is impossible by

Lemma 1(d).

(3) If X= [x]Y, where Y is in normal form, assume by induction

that Y contains no redexes. The rest of the proof is by induction on Y.

Note that Y is weakly irreducible.

(3a) If Y=x, then X = l, which is not a redex by Lemma 1(d).

(3b) If Y does not contain x, then X = KY. By Lemma 1(d),

neither X nor K is a redex, so any redexes in X must be components

of Y.

(3c) If Y=Xx and contains no redexes, clearly X contains none.

(3d) If F=FiF2 and X = SXiX2 where Xt= [x] Yit i=l, 2, then
assume the theorem for Ai and A2. Then the only possible redexes in
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X (by Lemma 1(d)) are SXi and X itself. Consider the two cases

separately.

(3dl) Suppose SXi is a redex. Then SXi is a substitution instance

of a redex scheme SR. If SR is basic, then SR = S(KI), so Kl= [x] Yu

Hence Yi = l, contradicting the hypothesis that Y is weakly irreduc-

ible. Thus, SR= [x]Pijk for a redex scheme P. This implies that

P = SRM for a meta-variable M, so that X itself is also a redex. Hence,

this case may be included in the next.

(3d2) Suppose X = SXiX2 is a redex, a substitution instance of a

redex scheme SRiR2. If SRiR2 is basic, then Rt = KA, so Xi=KU

= [x] Yu Then Fi = [/and does not contain x. Either R2 = I or R2 = KB.

In the first case, X2 = l, so F2=x. But then X= [x]£/x = £/, which is

impossible. In the second case, X2 = KV and F> = F so that Y does

not contain x, and A^= [x] F=KF, contrary to hypothesis. Thus,

SRiR2 is not basic.

We may now suppose that Si?ii?2 = [x]Piji for a redex scheme P,

so that X= [U/A][V/B][W/C] [x]Pm. Since X= [x] F, X does not

contain x, and hence, neither do U, V, W. Thus, Lemma 3 applies

and X=[x]Q, where Q= [U'/A] [V'/B] [Wk/C]P. Moreover, we

must have Q= QiQ2 and X = S([x]<2i)([x]<22), for the alternative is

that Q^SWV^^SUVx, so that SRiR2 = SAB, which is not a redex

scheme. Then by Lemma 4, Q> Y, Qit> Yu and <22l> Y2.
If P is weakly irreducible, then Lemma 2 (with Y=R) implies that

Y= [Ui0/A ][V'°/B][Wk°/C]P. This contradicts the hypothesis that

Y is not a redex.

If P is weakly reducible, then either P = SABC or P = KAB, so that

either Q = SUiV'Wk or Q^KU^K But since <3i!> Fi, either SUlV'\>Yi
and hence Fi = SF'F", or else KU*>Yi, and hence YX = KY'. In either

case, Y is not weakly irreducible. This final contradiction completes

the proof.
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