
PERIODIC SOLUTIONS FOR PERTURBED NONLINEAR
DIFFERENTIAL EQUATIONS

T. G. PROCTOR1

Abstract. The existence of periodic solutions of a periodically

perturbed system of nonlinear differential equations is established.

The construction of such solutions is proved in a more restricted

situation. These results generalize well-known results for perturbed

linear differential equations. Examples are given.

1. Introduction. In this paper we investigate the existence and

construction of periodic solutions of a periodically perturbed system

of nonlinear differential equations. The perturbed system is studied

using an integral equation introduced by Alekseev [l], [2] which is

a generalization of the variation of constants integral equation. The

techniques used are analogous to those used in establishing the exis-

tence of periodic solutions in perturbed linear systems [3]. Almost

periodic perturbations of nonlinear systems have been studied by

May [4] using a similar technique; however, our systems will not

necessarily meet his requirements.

2. Existence of periodic solutions. Let P, 8, a be positive numbers

with 8<cr, let Ss and Sa be the closed spheres of radii 5 and a respec-

tively in Rn and let fit, x) be a C1 function from RXSr into Rn with

period P in t. We make the following assumptions concerning the

function /.

(i) y in Ss implies the solution x(t, r, y) of the unperturbed initial

value problem

x =f(l,x),        x(t) = 7

exists for 0^-r^P.

(ii) There is a nonempty set K~ESS so the function F given by

F(y) =y-x(P,0,y)

is a homeomorphism of K onto F(K).
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(iii) /(/, 0)=0, O^t^P.
We denote the continuous functions k from [0, P] into Ss with

k(0) —k(P) by Sj. Let the perturbation function g(t, x, e) be a con-

tinuous function from RXSsX [0, eo] into Rn and satisfy

(iv) g has period P in t, g(t, x, 0) =0.

(v) For k in Sa and

r p dx
a(k,e) =   I       — (P,s,k(s))g(s,k(s),e)ds,

J o     07

we assume a(&, e) is in F(K) for 0^€g€0.

Let S be the Banach space of all continuous functions k from [0, P]

into 22" with k(0)=k(P) and the supremum norm and let T he an

operator from Ss into S defined by

Tk(l) = x(t,0,F~\a(k,e))) +  f   — (t, s, k(s))g(s, k(s), e)ds
■J 0   dy

for O^t^P, 0^ege0.

Theorem 1. For e s?wa// enough T has a fixed point y(t) in Sj. Further

the periodic extension y*(t) of y(t) is a periodic solution of the perturbed

differential equation

y =f(t,y) + g(t,y,e).

Proof. The hypothesis on/ implies x(t, r, y) and (dx/dy)(t, r, y)

are continuous for 7 in Ss and O^t—T^P. Conditions (iii) and (iv)

imply

limx^O.F-Ka^.e))) =0
«—0

uniformly for O^t^P and k in Sa so choose «i>0 so that FSjCZ§6 for

OrSe^g]. It is easily checked that T is continuous, Sa is closed and

convex and FSa has a compact closure in Sa; therefore by the Schauder

fixed point theorem there is a function y(t) = Ty(t). This representa-

tion shows y(t) has a derivative which is given on [0, P] by

y(t) =f(t,x(l)) + g(l,y(t),e)

/' ' dxfx(t, x(t, s, y(s))) — (t, s, y(s))g(s, y(s),e)ds
11 07

where x(t) =x(t, 0, F~1(a(y, ())). (Here the derivatives at 0 and P are

right and left derivatives respectively.) Also we have
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fit,yit))-fit,xit))

ri d
—fit,xit,s,yis)))ds

J o  ds

/'' dxMl, xit, s, yis))) — it, s, yis)) [yis) - fis, y(s))]ds.
o oy

Therefore for

Wit) = yit) - git,yit),e) -fit,yit)),

we have

Wit) = -  Cfxit,xit,s,yis)))-it,s,yis))Wis)ds.
•/ o oy

The only continuous solution of this equation on [0, P] is Wit) =0.

Example 1. The initial value problem x=x2, x(r) =y has solution

y 1 1
xit, t, y) =-,-<7l-;        0 < t- t < P.

1-yit-r) IP IP

For K= [-1/2P, 0] the function

y
F(y) = y-> y in A",

1 — yP

is continuous and has continuous inverse

a- ia2-Aa/P)112
F-Ka) =-        2

for — l/6P^a^0. The requirement (v) on g can be written as k in

Si/2P implies

-i/6Fi XV w';--*)]■*• tM''),faao-

Theorem 1 establishes the existence of a periodic solution to a

perturbed nonlinear differential equation; however, no construction

is given for such a solution. In many cases it seems unrealistic to

suppose that T is a contraction operator since F-1 may not be

Lipschitz as in the example. The following section does provide a

method to construct periodic solutions in a special situation.
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3. Construction of periodic solutions. Let Q be a region in Rn, and

let/(/, x) be a C1 function from i?Xfi into Rn with period P>0 in t

and let l(t), u(t) be continuous functions from R into 0 with period P

with l(t)^u(t), O^t^P where a vector inequality l^u means the

components U, Ui of the vectors I, u satisfy U^Ui, i = 1, 2, • • • , n. Let

5 = {xin Rn:l(t) g x ^ «(*) for some/}

then for 7 in 5 we assume

(i') the solution x(t, r, 7) of the initial value problem x=f(t, x),

x(r)=7 exists for O^t—r^P, t any real number; and

(ii') the function F given by F(y) =y—x(P, 0, 7) is a homeomor-

phism of 5 onto F(S).

Let g(t, x) be a continuous function from RXS into Rn with period

F in t and let S* be the set of continuous functions k(t) from [0, P]

into Rn with £(0) =£(P) and l(t)^k(t) ^u(t) for all i. For k in S* and

rpdx
a(k)= —(P,s,k(s))g(s,k(s))ds

J 0     07

we assume a(&) is in F(S). And we define an operator T on S* into S by

/•'dx-(M,A(j))g(*, *(*))<**
0  07

for 0^/^P.

Theorem 2. If l(t) ̂  F/(0, Fm(0 ̂ u(t) for O^t^P and if k, h in S*
with k(t)^h(t),0^t-=P implies Tk(t)^Th(t), O^t^P, the sequences

{ Tml}Z-o, { Tmu }Z-o converge uniformly to fixed points of T. If y is a

fixed point of T then the periodic extension of y(t) is a periodic solution of

y=f(t,y)+g(t,y).

Proof. The sequences {Tml(t)}Z=i and {Tmu(t)}Z=0 are non-

decreasing and nonincreasing respectively, uniformly bounded and

equicontinuous. Hence they converge uniformly to limit functions

which are fixed points of T. The proof that such a fixed point is a

solution of the perturbed differential equation is identical to that

given for Theorem 1.

Example 2. The initial value problem x = x(l—x), x(t)=7 has

solution

x(t, r, 7) = 7«*-7(i + y(e'-T - i))

for 7>0, 0^—r^P. For 7*= (ep'2-l)/(ep-l) the function

F(y)=y-yep/(l+y(ep-l)),        7* ^ 7 ^ 1,
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has continuous inverse

iep - 1)(1 + a) + Hep - 1)2(1 + a)2 + 4aiep - l))1'2
F '(a) =-i

2(ep - 1)

Fiy*) ga^O. Let hit) be a nonnegative function of period P such that

f   his)ds^y*iep'2- 1),
J o

let

git, x) = - A(<)/(1 + x2),

and let lit) =0, w(2) = 1, 0^/^P. It is easy to verify the conditions of

the theorem if P is small enough.

4. Final remarks. The hypothesis ii and ii' of Theorems 1 and 2

respectively is analogous to the noncriticality requirement [3] made

for unperturbed linear systems. The existence of periodic solutions

to perturbed nonlinear systems corresponding to the critical case can

be treated using the methods above. However, if one imposes hypoth-

eses similar to those used in Theorem 1 the question of a solution to

the resulting bifurcation equations is not easily established. This

follows since we do not know the dependence of the fixed point y(i)

as a function of e. Hypotheses similar to those used in Theorem 2 are

extremely hard to verify since this requires that the difference be-

tween a function git, x) and its mean value be monotone over a class

of periodic functions xit).
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