A DIRECT PROOF THAT A LINEARLY ORDERED SPACE IS HEREDITARILY COLLECTIONWISE NORMAL¹

LYNN A. STEEN

Although it appears well known that a linearly ordered space is completely normal (=hereditarily normal), most available proofs (in, for instance, [1] and [2]) are very indirect. In this paper we present a direct proof of a stronger theorem, namely that the interval topology is hereditarily collectionwise normal.²

If X is linearly ordered, we will call a set $S \subset X$ convex if $a, b \in S$ and a < t < b implies $t \in S$. The union of any collection of convex sets with nonempty intersection is convex, so any subset S of X can be uniquely expressed as a union of disjoint maximal convex sets called convex components. Clearly every interval in X is convex but not conversely, and we will, as usual, denote intervals by (a, b), (a, b], [a, b), or [a, b]. In what follows, X will denote a linearly ordered space, i.e., a linearly ordered set endowed with the usual open interval topology.

Suppose $\{A_i\}$ is a discrete family of subsets of X. Let

$$A_i^* = \bigcup \{ [a, b] \mid a, b \in A_i, [a, b] \cap A_j = \emptyset \quad \forall j \neq i \}.$$

Then $A_i \subset A_i^*$, and $A_i^* \cap A_j^* = \emptyset$ whenever $i \neq j$; in fact, the family $\{A_i^*\}$ is discrete. To prove this, we select for each $x \in X$ a neighborhood I_x which intersects at most one of the sets A_i . If I_x meets exactly one element of $\{A_i\}$, say A_k , and if x is not an endpoint of X, we can take I_x to be an interval (s, t). Then if $i \neq k$, (s, t) may intersect A_i^* only if it intersects some interval [a, b] where $a, b \in A_i$. But since $(s, t) \cap A_i = \emptyset$ and $a, b \in A_i$, then $(s, t) \subset (a, b)$ which would imply that $A_k \cap A_i^* \neq \emptyset$. But this is impossible if $i \neq k$, so in this case I_x can intersect at most one of the sets A_i^* . Other cases are treated analogously, so $\{A_i^*\}$ (and consequently $cl(A_i^*)$) is discrete.

If we now write each A_i^* and $(\bigcup_i A_i^*)'$ as the union of convex components, $A_i^* = \bigcup_{\alpha} A_{\alpha}^t$, and $(\bigcup_i A_i^*)' = \bigcup_{\gamma} C_{\gamma}$, the collection $M = \{A_{\alpha}^t, C_{\gamma}\}$ inherits a linear order from X and is thus itself a linearly ordered set. We claim that in the ordered set M, each of the sets A_{α}^t has an immediate successor whenever A_{α}^t intersects the closure of S_{α}^t , the set of strict upper bounds for A_{α}^t . For suppose $A_{\alpha}^t \cap S_{\alpha}^t \neq \emptyset$. Then $A_{\alpha}^t \cap \operatorname{cl}(S_{\alpha}^t)$

Received by the editors December 2, 1968.

¹ This work was partially supported by the Research Corporation.

² The author wishes to thank the referee for several clarifying suggestions.

728 L. A. STEEN

contains precisely one point, say p, every neighborhood of which intersects A_i^* . Thus since $\operatorname{cl}(A_i^*)$ is discrete, there exists a neighborhood (x, y) of p disjoint from $\bigcup_{j \neq i} \operatorname{cl}(A_j^*)$. Then $(x, y) \cap S_{\alpha}^i \neq \emptyset$, so $(p, y) \neq \emptyset$. But the definition of A_i^* insures that (p, y) is disjoint from both A_i^* and $\bigcup_{i \neq j} A_j^*$, so there must exist some set C_{γ} containing (p, y). In the linear order on M, C_{γ} is the immediate successor to A_{α}^i , and we will call it C_{α}^{i+} .

For each γ , select and fix some point $k_{\gamma} \in C_{\gamma}$. Then whenever $A^{i}_{\alpha} \cap \operatorname{cl}(S^{i}_{\alpha} \neq \emptyset)$, there exists a unique $k^{i+}_{\alpha} \in C^{i+}_{\alpha}$, the immediate successor of A^{i}_{α} . In such cases, let $I_{\alpha} = [p, k^{i+}_{\alpha})$ where $p \in A^{i}_{\alpha} \cap \operatorname{cl}(S^{i}_{\alpha})$; otherwise, if $A^{i}_{\alpha} \cap \operatorname{cl}(S^{i}_{\alpha} = \emptyset)$, let $I^{i}_{\alpha} = \emptyset$. Define J^{i}_{α} similarly for the strict lower bounds of A^{i}_{α} (using the same collection of points $k_{\gamma} \in C_{\gamma}$). Then for each α and each i, let $U^{i}_{\alpha} = J^{i}_{\alpha} \cup A^{i}_{\alpha} \cup I^{i}_{\alpha}$. Each U^{i}_{α} is clearly an open set containing A^{i}_{α} , so $U_{i} = \bigcup_{\alpha} U^{i}_{\alpha}$ is an open set containing A^{i}_{α} . Since no A^{i}_{α} intersects any A^{i}_{β} for $i \neq j$, and since the use of the same k_{γ} throughout implies that no J^{i}_{α} or I^{i}_{α} may intersect any J^{i}_{β} or I^{i}_{β} , it is clear that no U^{i}_{α} can intersect any U^{i}_{β} for $i \neq j$. Thus $U_{i} \cap U_{j} = \emptyset$ whenever $i \neq i$, and hence X is collectionwise normal.

Now every subspace of X inherits both a topology as well as a linear order; these need not be compatible, even for open subspaces. (The open subspace $\{\alpha+1 \mid \alpha \text{ is a limit ordinal}\}$ of the linearly ordered ordinal space $\{\gamma \mid \gamma < \Omega\}$ inherits the discrete topology but is of the same order type as the countable ordinals.) However, the two structures are compatible on convex subspaces of X, whence convex subspaces of X are collectionwise normal. Therefore any open subset of X—being the disjoint union of open collectionwise normal subspaces (namely its convex components)—is collectionwise normal. This suffices to prove that every subset S of X is collectionwise normal, since if $\{A_i\}$ is a discrete family in S, then each point $s \in S$ has a neighborhood $U_i \cap S$ which meets at most one of the sets A_i . But then $U = \bigcup_s U_s$ is an open set with the same property, and since U is collectionwise normal, so must be S. Hence X is hereditarily collectionwise normal.

That X is completely normal (i.e., hereditarily normal) follows as a corollary. But it also may be proved more directly by a slight modification of the proof that X is collectionwise normal.

REFERENCES

- 1. E. Čech, Topological spaces, Publ. House Czech. Acad. Sci., Prague, 1959; English Transl., Wiley, New York, 1966. MR 21 #2962; MR 35 #2254.
 - 2. S. Gaal, Point set topology, Academic Press, New York, 1964. MR 30 #1484.