A NEW DEFINITION OF A REDUCED FORM
E. H. HADLOCK AND T. O. MOORE

Introduction. Let a ternary quadratic form f=ax24by?+-c2?2+2ryz
+2sxz42txy, with integral coefficients, be denoted by f=[a, b, ¢, 7,
s, t]. Associated with f is the determinant d (#0) defined by

a t s
d=|t b r
s r ¢

We consider in this paper indefinite forms (forms which represent
both positive and negative integers) as well as positive forms (those
which represent only nonnegative integers). All number symbols
which appear in this paper represent integers.

In [3] it is shown that every primitive ternary quadratic form is
equivalent to a primitive form in which the coefficients of 2xz and
2xy are one and zero respectively. In this present paper we find that
any ternary quadratic form f is equivalent to a form f = [a, b, ¢, 7, s, t]
in which a (or —a) is the minimum nonzero integer represented by
Ifgl (called the first minimum; b (or —b) is the second minimum
represented by f.; ¢ (or —¢) is the third minimum represented by f).
(See definitions for second and third minimums.) Finally either
t|(Ja|, d) and s=0 or t=0 and s|(|a|, d). Thus our definition of a
reduced form is quite simple. (See definition of a reduced form and
conventions adopted to insure uniqueness.)

THEOREM 1. Let f,= [as, bs, €3, 73, 53, t2] be a form. Let
¢ my = min{ | f(x, 3, 9) | :/2(x, 3, 2) = 0}.

Then f, is equivalent to a form fi= [a, b, a, n, s, tl];m1= Ial, a s
represented primitively by f, and g1| g where

(2) g1= (6, t1,51) and g = (ag,ad).

ProoF [1]. Let a=fu(ki, h, m) where my=|fo(ks, kh, m1)|. Then
(kl, ll, n1)=1, fOI', if (kl, ll, n1)=g2>1. then fz(kl/gz, ll/gg, nl/g2)
=a/g.. But |a|/g.<|a|, contradicting the definition of a. Hence a is
represented primitively by f,. Further if g3 = (ki, /1), then (g, n;) =1
and there exist integers ke, I, k3 and n35 kilo—hk,=gs, and gsns —mniks
=1. Then the transformation
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ky ks klka/gs
(3) =\l I llks/ga

ny 0 ng
has determinant | 7’| =1, since

"3(/3112 - k2ll) + "lks/gs(k2lx - kll2)
= (gsns — niks)(kils — koli)/gs = 1.

Thus T applied to f: gives an equivalent form. Also, this equivalent
form is f; having a as the coefficient of x2.

To show that gllg, observe that a4 +4T1+51S51=d, where 4, Ty
and S; are the cofactors of a, f; and s; respectively. Thus by (2) g1| d so
that g1| g.

DEeFINITIONS. Let 2 be defined by

“) z = {(x,y,z):ax—}-tly-i-slz=O,g0r —g},

where g is defined in (2) and @, 4, and s; in Theorem 1. Define a’, ¢/
and s’ by

5) o =a/g, !=t/g, s’ = si/g1, where (d,0,s') =1,
and g is defined in (2).

THEOREM 2. Let fi= [a, by, ¢1, 11, 51, b1], m, g1 be given as in Theorem
1and o', t', s by (5). Then f, is equivalent to f = [a, b, c, 7, 5, t] where

(6) lt|] =g and s=0.

Proor. If s;t; =0, then replacing x by x+ky1-+hs2 in fi for some
hi and k. gives an equivalent form with the same leading coefficient a
and with the coefficients of 2xz; and 2xy; not zero. Thus we may as-
sume that ;4,50 in fi.

We apply the transformation

1 p o
) T=10 a B|5|T| =1
0 v &

to fi. Then
(8) a =f1(17 0’ O)) b =f1(p) «, 7)) c=fl(0) B, 6))
t=ap + Lo + s1v, s = aoc + 68 + s16.

We show first that there exists a triple (x, ¥, 2) = (p, &, ¥) satisfying
(4) with ¢= +g; and with (a, v)=1. Let
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9 F="ta+sy.

Then by (5), (8)« with t=%g

(10) F=11-2dp

If dy,=(t, s'), then

(11) t = dit’, s' = dis”, where (,s"”) =1.

Thus we must show that there exists a triple (p, e, ¥)»
(12) F=d{"a+s"y)=+1—4dp, with (a,7v) =1.

Since (a’, ¢/, s’) =1 then

(13) (dy, a’) = 1.
Hence by (13) there exists an integer p»
(14) ap= 11 (modd)), ie, 1 —ap=4dh

for some integer 6. All solutions of (14) are given by
(15) p=pot+dls £1—dpy= diby,

where py, 0o is any solution of (14), and 6’ is an arbitrary integer. By
(15)
(16) +1 — d’(p - dlgl) = d100=> +1— (Z,p = dl(eo - 0’0').

By (15). (a’, 6o) =1. Thus by Dirichlet’s theorem there exists af’s

(17) 6o — a0 = d,
where d, is a prime and »

(18) (dg, a’) = 1.
By (11). there exists integers @ and v >
19) Va4 sy = d,
and

(20) (o, 7) = 1.

(Suppose a prime pl (e, v). Then p=d,. By taking ¢3(¢, ds) =1, we
obtain o’ =a+s5"¢, ¥ =y —1t"'¢ as a solution of (19) with (o', ¥') =1.
For if (¢/, ¥')>1, then («/, ¥') =d,. Thus dzls"¢ and dzlt”d) which
contradicts (11), since (¢, d») =1.) Hence by (16), (17) and (19) there
exists » triple (p, o, ) satisfying (12), with (a,v) =1. Thus by (12) we
note that

(21) (¥,a) = 1.
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In view of (7): we want to find § and 8>

(22) ad — By = 1.
All solutions of (22) are given by
(23) 8 = 8 — yn, B = B¢ — an,

where 8y, B0 is any solution of (22) and # is an arbitrary integer. Thus
by (5), (6)2, (8)s, (9) and (23)

(24) do— Fn=s/g1— ({'Bo + 5'80), s =0.

Hence it is seen by (21), that (24) has a solution in ¢ and #. Any such
solution gives a triple (o, 8, 6)>(24) holds, and (8); with s=0 also
holds. [In fact all solutions of (24) are given by

(25) o =o09— Kk n=mnyg— ak

where 0y, 7o is any solution of (24) and k is an arbitrary integer. Thus
by (23) and (25) we determine 8 and & by

(26) B=B0o— ang+ ad’k, & =28 — yno+ vd'k.]

REMARKs. The transformation which replaces y by —z and z by y
applied to f of Theorem 2 gives a new form in which ¢ remains un-
changed, the coefficient of 2xz is +g¢; and the coefficient of 2xy is
zero. However we give Theorems 3 and 4 for the purpose of numerical
calculation.

THEOREM 3. Let fi= [a, by, c1, 71, 51, t1], m, g1 be given as in Theorem
1;a,t,s" by (5). Let o and n satisfy

@27 ala(c + pn) — pB] = as — 51,  for some B,

where (p, o, ¥) is some triple satisfying (8)s with t=0, (o, ¥)=1 and
a#0, then there exists a transformation T in (7) which transforms fi
into the equivalent form f=[a, b, ¢, r, s, t] where

(28) t=0 and |s| =g

Proor [2]. Let (x, ¥, 2) = (o, , ) in (3)1. Then all solutions of (8)4
with ¢£=0 are given by

(29) p=tw~—s'n, a=su— dw, v =av— tu,

where %, v, and w are arbitrary integers. Let

30) ds = (d,s'), de = (a',V'); then (a'/ds, s'/ds) = (d'/ds, ¥ /ds) = 1.
Then by (29); and (29),
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a/ds = S'/dsu d d,/da'w, ‘Y/d4 = a’/dw - l’/d4u.

Let u (#0) be any fixed integer s(%, a’) =1. Then by Dirichlet’s
theorem there exist integers w and v 5

(31) a=dpy, 7= dipy,
where p; and p, are primes and

(32) (p1, ds) = (P2, p1, ds) = 1.
But

33) (ds, ds) = 1.

For if a prime p|d; and p|ds, then p|(a’, ¢, s’) contradicting (5)s.
Thus by (29), (31)-(33), there exist a triple (p, &, 7v) satisfying (8)4
with t=0and (a, v) =1. We now seek a solution of (24) with |s| =g
Since (@, v) =1 and a0, let 8, § satisfy (22). Hence

(34) ad =14 By.
Since ¢ =0, then (10) is replaced by
(35) K= —dp.

Thus by (5), (9). (24), (25), (34) and (35), ¢ and #» must satisfy
da(c + pn) = as/g1 — ('8 + ads’) = as/g1 — ('8 + 5" + Bs')
=as/g1— 5 — B(la+s"y) = as/g1 — 5" + a'Bp.
Since (27) holds, the desired transformation in (7) exists.

THEOREM 4. Let f; = [a, by, 1, 1, s1, tl], ma g1 be given as in Theorem 1
and a’, t', s" by (5). Let d3 and d, be given by (30). Let p and B satisfy

(36) adp=t/g1— sy and {B=s/g (moddy) with By = — 1
or p and 6 satisfy
B7) do=t/gn—1ta and s5'6=s/g (mod dy) with ad = 1,

where |t| =giand s=0 or t=0 and |s| =g, then there exists a transfor-
mation (1) which transforms fi into the equivalent form f=[a, b, ¢, 7,
S, t] E

(38) |t| =g1 and s=0 or t=0 and |s| =g

PRrOOF. Suppose (36) holds. Let =0 and (p, B, v) satisfy (36).
Since By = —1, (7): holds. By (36) we observe that (8)4 is satisfied.
By (36): let o and § satisfy
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do+ 56 =5/g1 — B

Thus (8)4 holds.

Suppose (37) holds. Let ¥ =0 and (p, «, 8) satisfy (37). Since ad =1,
(7)2 holds. By (37)1, we observe that (8), is satisfied. By (37); let ¢
and @ satisfy a’o+4t'8=5/g1—s’6. Thus (8); holds.

DEeFINITIONS. Let 3= {T:| 7| =1 and T transforms a given form
f; of Theorem 1 into f=[a, b, ¢, 7, s, t] 5 a= +m; of Theorem 1 and
either t| g and s=0 or t=0 and s|¢}.

(i) m= min{ |f2(x, Y, z)| folx, ¥, 2) ;éO} is called the first minimum
Of fz.

(i) me=min{|b|:TE3} is called the second minimum of fa.

(iii) Let 5= {7:T€5 and |b] =m.}. Then my=min{|c|: TE5}
is called the third minimum of f..

THEOREM 5. Let the form fi1 of Theorem 1 be given in which the coeffi-
cient a of x? satisfies a = +my. Let g1=(a, t, s1). Then fy is equivalent to
f= [a, b, ¢, 1,5, t] where b= +m,, c= +m3, and where either |t| =g
and s=0 or t=0 and |s| =g.

Proor. By Theorem 2 there exist transformations which transform
frinto forms f=[a, b, ¢, 7, 5, t] ea= +m; and either || =g and s=0
or t=0 and |s| =gi. Let 5, be those transformations for which
b= +m, Then let TEJ5c= +m3. Thus T transforms f; into the
desired form f.

DEFINITION. A form f=[a, b, ¢, 7, s, t] is said to be reduced if
a=t+m, b= tm, c= tm3, r>0 and either

t|g and s=0 or s|g and ¢=0,

where the following conventions are adopted:

(i) If f=m,; and f= —m,, then we choose a =m;. Having fixed the
sign of a, we do likewise for the sign of b if such a choice exists. Next
the sign of ¢ is determined as positive if a choice exists.

(ii) We choose the smallest possible divisors || and |s| of g, sub-
ject to (i).

(iii) If f; is equivalent to f where tlg and s=0 and also to f where
sl g and =0, we choose the latter as the reduced form provided (i)
and (ii) are satisfied.

REMARKS. If f=[a,b,¢,7,s,0] where»<0and s <0, then the trans-
formation x= —x’, y= —9’, z=3" of determinant one transforms f
into [a, b, ¢, —r, —s, 0]. Similar statements may be made if » <0 and
s>0o0r r>0and s<0. Similar remarks apply when f=[a, b, ¢, 7, 0, ¢].
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COROLLARY. Let fy be given as itn Theorem 1. If g =1, then f1 is equiva-
lent to a reduced form [a, b, ¢, r, s, t] where either t=1 and s=0or t=0
and s=1.

THEOREM 6. Any ternary quadratic form f, is equivalent to a unique
reduced form.

ProoF. By Theorem 1, f; is equivalent to a form fi = [a, b, c1, 71, 51,
t:] in which |a| =mi. Then Theorem 5 gives the desired conclusion
since by Theorem 1, g1|g.

ExaMPLE 1. f;=3x2+3y] 432} — 29121 — 22121 — 22191 with determi-
nant d=16 is a reduced form according to Eisenstein’s definition.
What is the equivalent reduced form according to our definition?

Now ¢=3fi=X24+2V2+62, X =3x1—y1—21, Y=2y1—2z. Thus
¢(+1, +1, 0)=3. But x; and ¥, are not integers. Hence f1#1. Like-
wise fi7#2. Thus fi(1, 0, 0) = 3 is the first minimum of fi. Also f1(0, 1, 0)
=3 is the second minimum of f;. Hence by (7)

1 0 ¢
T=10 1 8[>|T| =1
00 s

where p=0, =1, y=0 with o, 8 and § yet to be determined. Thus
1= I Tl =8. By 2) z2=(3, —1, —1)=1. Hence by (6) of Theorem 2,
t=+1and s=0since by (8)4¢= —1 holds. According to our definition
we choose s =0 in (8);. Thus we seek the minimum value of fi(s, 3, 1)
where ¢ and 8 are integral solutions of 3¢ —3—1=0. Now all solutions
of this equation are given by 6 =1—#% and 3=2—3%, where 7 is an
arbitrary integer. Hence fi(1 —n, 2—3#, 1) =6(2n —1)242=f,(1, 2, 1)
=8 is a third minimum. Thus applying the transformation X; =x-z,
y1=7y-+22z and 2z, =2 we obtain the equivalent form g=3x2+3y24 822
+8yz —2xy. But replacing y by —y and 2 by —z in g replaces g by
the reduced form f = 3x2-+3y2+4-82248yz+2xy. Note that f;(0, —1, 1)
=8. Thus the transformation x,=x, y1=vy—z and z=z applied to f;
gives the equivalent form g=3x2+43y2+48s2—8yz—2xy. Replacing
x by —x and z by —z gives f.

ExamMpPLE 2. Let fo=3x3+47y3+4325+2y:2,+12x:2,+ 8%y, with
determinant d =8. Find the reduced form equivalent to fa.

By completing the squares in %, ¥, and 2., we find the first minimum
of f, to be given by f2(—7, 4, 1)=2. Thus in (3) take b= —7, ;=4
and #;=1. Hence gsg=(—17, 4)=1. Thus l,=1, k.= —2 is a solution
of —7l,—4k,=1.Inn;—k;=1, take ;=1 and k;=0. Hence
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-7-2 0
T"=| 4 1 of, [T =1,
1 0 1

takes f, into fi=[2, 3, 43, —11, 5, —1]. Thus ¢ =10f; =5X2+ V2
+162; where X =2x—v,+521 and Y =5y,—17z. Hence we find
that X =0, Y=2 and z;=—1=x=1, y1=—3, and z;=—1 so that
fi(1, —3, —1)=2 is a possible second minimum. By (2), g=(a, d)
= (2,8 =2and g = (a, b, s1) = (2, —1,5) = 1. From (8): and
(1, =3, —1) we conclude that p=1, = —3,y= —1. From (4) and
5) ap+ta+sy =201+ (—1)(-3) +5(—1) =0 so that
fi(l, =3, —1)=2is a second minimum provided (27) holds; i.e., if
alac+(ap)n—pB]=2[—30—3n—B]=as—s;=—35—5, where s=1.
Thus (27) has a solution in ¢ and n if we take 8=1 such that
1= l TI =ad—PBy=—364+1. Thus §=0. Now (27) reduces to

(39) o+ n=1
All solutions of (39) are given by
(40) o=k n=1-—k

where  is an arbitrary integer. All solutions of | T| =1, i.e. of —38
43 =1 are given by

41) = mn, B=143n
where 7 is an arbitrary integer. By (40) and (41)
(42) o=k, B =4 — 3k, 6=1—kF,

where & is to be chosen so that fi(k, 4 — 3k, 1 —k) is a third minimum.
Now fi(k, 4—3k, 1 —k)=2k2—2k+3=2f,=(2k—1)245. Take k=1
and hence by (42), f(1, 1, 0)=3. By (7)

1 1 1
r=10-3 1
0—-1 0

takes f, into the reduced form f=2x24-2y?4322+2yz+2xz. If we had
chosen k=0, then T with its 3rd column replaced by (0, 4, 1) takes
fiinto [2, 2, 3, —1, 1, 0] which is equivalent to f by replacing x by
—x and z by —az.

ExaMmpLE 3. Let f;=2yz+2xz+2xy with determinant d=2. Find
the reduced form f equivalent to fo.
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my=a=f(1,1,0) =2,
By Theorem 1, we may take

T =

O
S N =

0
of.
1

Thus T” transforms f; into fi=[2, 4, 0, 3, 2, 3]. By (2) g=(2, 2)=2
and g1=(2, 3, 2)=1. By (8) and Theorems 4 and 5, we choose p, «
and v such that |f1(p, a, 'y)l = I b| =m,, a second minimum, and where
by (8)« 2p4+3a+2y=0. Now 2f;=X?—Y2—42% where X =2x-+43y
+2z, and y=Y. Thus we take x=p, y=¢, and z=v with X=¥V=0
and z= —1 so that fi= —2=5. Then 2p+3a=2 holds with «=0 and
p=1. Note that y=z= —1. Thus (36) holds for 2(1)=0/1—-2(—1),
By=—1=B=1and 3(1)=1/1( mod d;) where, by (30), ds=(2, 2) =2
and s is taken =g;=1. It remains to choose ¢ and § in (7) so that
[cl = Ifl(a, 1, 8)] =mg and such that (8); holds, i.e., 20+3(1)+26=s

where s=1. Thus we choose ¢ and & so that ¢=—(6+1) and m;
=|fi[—(+1), 1, 8]| =| —28?] =m,=2. Hence take §=—1 so that
¢ =0. Thus by (7)
1 1 0
T=1({0 0 1
0 -1 -1

transforms f; into f=[2, —2, —2, —2, 1, 0] with determinant d =2
which is equivalent to the reduced form [2, —2, —2, 2, 1, 0].
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