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Abstract. It is shown that the normal completions of certain

partially ordered vector spaces are the same as certain other normal

completions determined by Dilworth.

Among the standard finite-dimensional partially ordered real vec-

tor spaces are the space A„ = Rn+1, with the positive cone being the

set of vectors (x0, xx, • • ■ , xf) such that x0 = 0 and Xo=x? + ■ ■ •

+xn, and the space P„ of symmetric nXn matrices, with the positive

cone consisting of the nonnegative definite matrices. Also of interest

is Fn, the free vector lattice on n generators, which has recently been

determined by Kirby Baker   [l].

Since these spaces are completely integrally closed, their normal

completions (also called the completion by cuts) exist and are com-

plete vector lattices (Fuchs [2, p. 95, Theorem 19]). The object of

this note is to show that these spaces have the same normal comple-

tion as the spaces C(T), for certain topological spaces P, which Dil-

worth   [3] showed have isomorphic completions.

Let X and F be the vectors (xx, • • • , xf) and (yi, • • • , yf) in P",

X- Y = xxyx+ ■ ■ ■ +xnyn, and \X\ =(X-X)112. Then An consists of

the pairs (x0. X), and (x0, X) 3:0<->Xo=5 | X\.

Let Sn~1= [FGP":| Y\ = 1} be the unit sphere in Rn. Define

^:An-^C(S"~1) by<p(xo,X)(Y)=x0+X-Y.

Lemma 1. <p is an embedding of An into C(Sn~1).

Proof. <p is obviously linear. <p(x0, X) ^0 iff VFGS"_1,<K*o, A)(F)

= x0+A-F^0 iff VYESn~\ Xo^-X-Y. Since the maximum of

— X- Fover YES"^1 is | X\ , attained when Fis opposite in direction

to A, it follows that0(xo, A)^0iff x0^|A| iff (x0, X)^0. ■

Lemma 2. The normal completion of An contains C(S"~1).

Proof. Let fEC(S"~l),   FoGS-1, and u<f(Y0). Let m be the
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smaller of u and the minimum value of/. By continuity of/, 35 >0

| Y— Yo\ <8—>f(Y)>u. We notice that, by the Euclidean geometry

of the circle, | Y- Ya\ <5^>F0- F> l-52/2. Let r = 2(u-m)/b2,

Xo = u-r, X = rY0. Then, if |F-F0|<5, then <p(x0, X)(Y)=xQ

+X-Y=u-r+rY0-Y=u-r+r = u<f(Y), whereas if j F-F0| ^5,

then F0-F^l-82/2 and <p(x0, X)(Y)=u-r+rYa-Y^u-r

+r(l-52/2)=m^f(Y). Thus <p(x0, X)^f. Also <p(x0, X)(Y0)=u-r

+rYo- Yo = u. This is true for all real u<f(Y0), hence f(Y0) =

lub{</>(x0, X)(Yo):4>(xo, X)^f}. This again is true for all

FoGS"-1, hence / = lub {</>(xo, X):d>(x0, X)^f}. Similarly / =

glb{07o, X):<p(xo, X)^f}. Thus/ is in the normal completion of

An.    fl

Theorem IA. An, the normal completion of An, is the same as C(Sn~1),

the normal completion of C(Sn~1).

Proof. By Lemmas 1 and 2, AnQC(Sn-1)QAn. ■

Let us turn now to the space Bn- The elements of Bn may be con-

sidered as selfadjoint linear operators U on Rn. Dehneip:Bn—*C(Sn~1)

by t(U)(Y)=U(Y)-Y. Since t(U)(Y) =xP(U)(-Y), 4> may be con-
sidered as a function from Bn to C(Pn~1), where P"-1 is the (re —1)-

dimensional projective space.

Lemma 3. \[/ is an embedding of Bn into C(Pn~1).

Proof. \p is obviously linear. ip(U)^0 iff VYEP"-1, ^(U)(Y)^0

iff VYESn-\ ^(U)(Y) = 0iH VFGi?n, U(Y)-Y=0ifl U is nonnega-

tive definite iff £/^0 in B„. fl

Lemma 4. The normal completion of Bn contains C(Pn~1).

Proof. Let fEC(Pn~1) and let/ be considered thereby as an ele-

ment of C(Sn~1), let FoG-S"-1, and u<f(Y0). Let m be the smaller of

m and the minimum value of/. By continuity of/, as before, 35>0

| F-F0| <5->/(F)>m. Let s = (u-m)/(b2-bi/A), and for XERn,

let U(X) = (u-s)X+s(Yo-X)Y0. Then, if |F-F0|<5, then

il/(U)(Y) = U(Y)-Y=(u-s)Y-Y+s(Yo-Y)2^u-s+s = u<f(Y),and

similarly if | F-(- F0)| <5, whereas if | F+ F0| ^5, then i(U)(Y)

= (u - s)Y-Y + s(Y0-Y)2 £U- s + s(\ - 52/2)2 = m g/(F).

Also ypi U) i Yo) = u. As before, since this is true for all F0 and u, f is in

the normal completion of Bn- |

Theorem IB. Bn, the normal completion ofBn, is the same as CiPn~1),

the normal completion of CiPn~l).
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Proof. By Lemmas 3 and 4, BnQC(Pn-1)QBn. ■

Finally, consider F„, the free vector lattice on n generators. This

has recently been determined as the vector lattice of continuous func-

tions on R" generated by the coordinate projections gi'.gi(Y) =y,-.

These functions are those which are positively homogeneous of de-

gree one and piecewise linear on polyhedral cones with vertex at the

origin. Since such functions are determined by their restrictions to

S"-1, Fn may be embedded in C(Sn~1).

Lemma 5. The normal completion of P„ contains C(Sn~1) for w^2.

Proof. LetfEC(Sn~1), F0 = (1,0, • • • , 0), and u<f(Y0). Letm be

the smaller of u and the minimum value of/. Again by continuity of/,

35>0| F-Fo| <b^f(Y)>u. Let p = ((52-54/4)/(w-l))1'2,

t=(u — m)/p, c? = max(0, u, —m/(l—52/2)). Let hi = ugx—tgi, kt

= ugx+tgi, H = h2/\ ■ ■ ■ /\hn/\k2f\ ■ ■ ■ Ak„AqgxAugx. If |y,-| <p
for 2-Zi-g.n, then \yx\ >l-52/2. Thus, if yt>p, then H(Y)^h((Y)
= uyx—tyi^u — (u — m)=m^f(Y), and similarly if y,<— p, and if

yi<-l+52/2, then H(Y)^qgx(Y) =qyx^m^f(Y), whereas if

y^l-572, then |F-F0|<5, and H(Y)^ugx(Y) =uyx^u<f(Y).
Also H(Yf) — u. This is true for all real u<f(Yf), hence /(F0) =

lub{P/(F0):PrGP», H^f}. But P„ and C(S"-1) are invariant with

respect to rotations of 5n_1, hence for all YESn~l, f(Y) =

lub{H(Y):HEFn,H^f),hencef = lub{H:HEFn,H^f}. Similarly,
f = g\b{H:HEF„, H^f}. Thus/ is in the normal completion of

Fn. m

Theorem IF. Fn, the normal completion of P„, is the same as C(Sn~1).

Proof. By Lemma 5, P„ C C(S"-X) C Fn. ■

The normal completions of An, Bn, and P„ have thus been de-

termined as the completions of C(T) for certain compact Hausdorff

spaces P. It has been shown by Dilworth [3, Theorem 7.1] that the

spaces C(T) are the same for all nonempty completely regular second-

countable spaces without isolated points, and that C(T) may be de-

scribed as the lattice of normal upper semicontinuous functions on P.

Dilworth also describes this lattice as the lattice of continuous func-

tions on a certain Stone space. An alternative characterization has

been given by Semadeni [4] and Ramsay [5] as the lattice of bound-

ed functions h on P such that the restriction of h to some residual set

is continuous, modulo those which vanish on some residual set.

Thus we have:
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Theorem I. The normal completions of A„, Bn, and Fn are isomor-

phic to the spaces CiT) described above, for nSi 2. Ai, Bi, and Ft are

complete.
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