CLASS NUMBER IN CONSTANT EXTENSIONS OF ELLIPTIC FUNCTION FIELDS

JAMES R. C. LEITZEL

ABSTRACT. For F/K a function field of genus one having the finite field K as field of constants and E the constant extension of degree n we give explicitly the class number of the field E as a polynomial expression in terms of the class number of F and the order of the field F. Applications are made to determine the degree of a constant extension F necessary to have a predetermined prime F occur as a divisor of the class number of the field F.

Let F/K be a function field in one variable with exact field of constants K, a finite field having q elements. The order of the finite group of divisor classes of degree zero is the class number h_F . Let E denote the constant extension of degree n and h_E the class number of E. It is known that $h_E = kh_F$ for some integer k. In this note we give an explicit determination of k in the particular case that F has genus one and give several applications of it. Precisely, we prove the

THEOREM. If F/K is a function field with genus one and E/F is the constant extension of degree n then

$$h_E = \sum_{l=1}^{n} (-1)^{l-1} c_l h_F^l$$

where

$$c_{l} = \sum_{j=0}^{\lfloor n-l/2\rfloor} (-1)^{j} \frac{n}{n-j} \binom{n-j}{j} \binom{n-2j}{l} q^{j} (1+q)^{n-2j-l}.$$

The applications give the degree of a constant extension E that must be made for a given prime p to occur as a divisor of h_E .

We begin with some preliminary observations on the zeta function of F and some results on binomial expansions. For a field F as described above, the zeta function is given by

$$\zeta_F(s) = \frac{L(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}$$

where L(u) is a polynomial with rational integral coefficients of degree 2g, g the genus of F, [2]. It is known that $L(1) = h_F$. In fact if $L(u) = \sum_{i=0}^{2g} a_i u^i = \prod_{i=1}^{2g} (1 - \alpha_1 u)$ we have $a_0 = 1$, $a_{2g} = q^g$, and

Received by the editors September 2, 1969.

AMS Subject Classifications. Primary 1078; Secondary 1278, 1435.

Key Words and Phrases. Genus one, constant extension, binomial expansions.

 $a_1 = N_1 - (1+q)$. Here N_1 denotes the number of prime divisors of degree one for the field F. In a constant extension of degree n the polynomial numerator is given by

$$L_n(u) = \prod_{i=1}^{2g} (1 - \alpha_i^n u).$$

Thus the number of prime divisors of degree one in the extension of degree n is given

(1)
$$N_n = 1 + q^n - \sum_{i=1}^{2g} \alpha_i^n.$$

If we assume that F has genus one, then also E has genus one since F is conservative. Hence $L_n(u)$ is a quadratic polynomial for all n and the class number is precisely N_n , the number of prime divisors of degree one. In particular we have $L_F(u) = 1 - [1+q-h_F]u+qu^2$. The formula (1) involves the reciprocals of the roots; hence in our further work we shall be concerned with the following two relations:

- (2) $L^*(x) = x^2 [1+q-h_F]x + q$ with roots α , β .
- (3) $h_E = 1 + q^n (\alpha^n + \beta^n)$ giving the class number for a constant extension of degree n.

As a first step we collect some results on the roots of a quadratic polynomial such as (2). Since we can be more general, we assume we have given a polynomial $x^2 = Px - Q$ with P and Q not necessarily relatively prime. Our discussion is adapted from Lucas [5], and we repeat his proofs for convenience. If α , β denote the roots of $x^2 - Px + Q = 0$ then, setting $\delta = \alpha - \beta$, we have the following relations:

(4)
$$\alpha + \beta = P, \qquad 2\alpha = P + \delta,$$
$$\alpha\beta = Q, \qquad 2\beta = P - \delta,$$
$$\Delta = P^2 - 4Q, \qquad \delta^2 = \Delta.$$

We define $V_n = \alpha^n + \beta^n$ and it is easy to check that we have the following recursion: $V_{n+2} = PV_{n+1} - QV_n$.

In the discussion which follows we make use of two identities which can be found in Chrystal [1, pp. 178-179].

(5)
$$X^{n} + Y^{n} = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^{j} \frac{n}{n-j} \binom{n-j}{j} (XY)^{j} (X+Y)^{n-2j},$$

(6)
$$\frac{X^{n+1}-Y^{n+1}}{X-Y}=\sum_{j=0}^{\lfloor n/2\rfloor}(-1)^{j}\binom{n-j}{j}(XY)^{j}(X+Y)^{n-2j}.$$

From the relations in (4) we have

(7)
$$2^{n}\alpha^{n} = (P+\delta)^{n} = \sum_{\nu=0}^{n} {n \choose \nu} P^{n-\nu}\delta^{\nu},$$

(8)
$$2^{n}\beta^{n} = (P-\delta)^{n} = \sum_{\nu=0}^{n} (-1)^{\nu} \binom{n}{\nu} P^{n-\nu}\delta^{\nu}.$$

Adding these we conclude, using the definition of V_n and (4),

(9)
$$2^{n}V_{n} = (P + \delta)^{n} + (P - \delta)^{n} = 2\sum_{\nu=0}^{n} {n \choose \nu} P^{n-\nu} \delta^{\nu}$$
 (ν even) which gives

(10)
$$2^{n-1}V_n = \sum_{j=0}^{[n/2]} {n \choose 2j} P^{n-2j} \Delta^j.$$

On the other hand if we set $X = P + \delta$, $Y = P - \delta$ in (5) we conclude

(11)
$$2^{n}V_{n} = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^{j} \frac{n}{n-j} {n-j \choose j} (4Q)^{j} (2P)^{n-2j}$$

which after simplification yields

(12)
$$V_n = \sum_{i=1}^{n/2} \sum_{j=0}^{(n/2)} (-1)^j \frac{n}{n-j} \binom{n-j}{j} Q^j P^{n-2j}.$$

LEMMA 1. If p is a prime and $p \mid P$, then $V_n \equiv (-Q)^{n/2} V_0(p)$ if n is even and $V_n \equiv 0$ (p) if n is odd.

PROOF. From the recursion relations on V_n we see $V_2 = -QV_0(p)$, $V_3 = 0$ (p) and the result follows by induction.

LEMMA 2. If p is an odd prime, then

- (a) if $(\Delta/p) = 1$ we have $V_{p-1} \equiv 2$ (p) and
- (b) if $(\Delta/p) = -1$ we have $V_{p+1} \equiv 2Q(p)$.

PROOF. (a) Since $\Delta^{(p-1)/2} \equiv 1$ (p) setting n = p-1 in (10) gives

$$2^{p-2}V_{p-1} = P^{p-1} + \binom{p-1}{2}P^{p-3}\Delta + \cdots + \Delta^{(p-1)/2}.$$

But

$$\binom{p-1}{2i} \equiv 1 \ (p);$$

thus we have

$$2^{p-2}V_{p-1} \equiv \frac{P^{p+1} - \Delta^{(p+1)/2}}{P^2 - \Lambda} (p).$$

Now $P^{p+1} \equiv P^2$ (p) and $\Delta^{(p+1)/2} \equiv \Delta$ (p); thus

$$2^{p-2}V_{n-1} \equiv 1 \ (p)$$

and (a) follows.

If $(\Delta/p) = -1$ then $\Delta^{(p-1)/2} \equiv -1$ (p) and setting n = p+1 in (10) gives

$$2^{p}V_{p+1} = P^{p+1} + {p+1 \choose 2}P^{p-1}\Delta + \cdots + \Delta^{(p+1)/2}$$

but

$$\binom{p+1}{2i} \equiv 0 \ (p).$$

Thus $2V_{p+1} \equiv 2^p V_{p+1} \equiv P^2 - \Delta \equiv 4Q$ (p) and (b) follows.

PROOF OF THEOREM. Specializing these comments now to (2) we have $P=1+q-h_F$ and Q=q. Thus from (12) we get

(13)
$$V_n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} \binom{n-j}{j} q^j [1+q-h_F]^{n-2j}.$$

Rearranging terms in (13) to give a polynomial expression in h_F we find

$$V_{n} = \sum_{l=0}^{n} (-1)^{l} c_{l} h_{F}^{l}$$

where

(15)
$$c_{l} = \sum_{j=0}^{\lfloor n-l/2 \rfloor} (-1)^{j} \frac{n}{n-j} \binom{n-j}{j} \binom{n-2j}{l} q^{j} (1+q)^{n-2j-l}.$$

The c_l are rational integers since

$$\frac{n}{n-j}\binom{n-j}{j} = \frac{n}{j}\binom{n-j-1}{j-1} = 2\binom{n-j}{j} - \binom{n-j-1}{j}.$$

It is easy to check that $c_n = 1$ and $c_{n-1} = n(1+q)$. Using the identity (5) we find $c_0 = 1 + q^n$ and (6) gives $c_1 = n((q^n - 1)/(q - 1))$. Substituting (14) and the value of c_0 in (3) we find

(16)
$$h_E = \sum_{l=1}^{n} (-1)^{l-1} c_l h_F^l.$$

Consequently since $h_E = kh_F$ we have explicitly determined k as a polynomial expression in h_F ; namely

(17)
$$k = \sum_{l=1}^{n} (-1)^{l-1} c_l h_F^{l-1}.$$

We state our applications of these results in the following propositions:

PROPOSITION 1. If p = char F then

- (a) if $h_F \equiv 1$ (p) we have $h_E \equiv 1$ (p) for all finite constant extensions E;
- (b) if $h_F \not\equiv 1$ (p) and $f = \text{ord } (1 h_F) \mod p$ then $h_E = 0$ (p) for $\deg(E/F) = f$.

PROOF. From (15) we find $c_l \equiv \binom{n}{l}$ (p) since $q \equiv 0$ (p). Thus from (16) we get

(18)
$$h_{E} \equiv \sum_{l=1}^{n} (-1)^{l-1} \binom{n}{l} h_{F}^{l} (p),$$

which after rewriting becomes

(19)
$$h_E \equiv 1 - (1 - h_F)^n \ (p)$$

and the proposition follows.

Note. These conclusions are compatible with statements on the p-rank of the group of divisor classes of degree zero in elliptic function fields of characteristic p over an algebraically closed field of constants as given by Hasse [3].

PROPOSITION 2. If p is a prime and $p^m || h_F$, $m \ge 1$, then $p^{m+1} || h_E$ for a constant extension E/F of degree n if and only if $p || n((q^n-1)/(q-1))$.

PROOF. From (17) since $p \mid h_F$ we have $p \mid k$ if and only if $p \mid c_1$ and

$$c_1 = n((q^n - 1)/(q - 1)).$$

COROLLARY. If $p = \text{char } F \text{ then } p^{m+1} \mid h_E \text{ if and only if } p \mid n \text{ (Leitzel } [4]).$

PROPOSITION 3. If $p \mid 1+q-h_F$ then for a constant extension E of degree n we have

- (a) $h_E \equiv 1 + q^n$ (p) if n is odd,
- (b) $h_E \equiv (1+q^{n/2})^2 \ (p) \ if \ n \equiv 2 \ (4),$
- (c) $h_E \equiv (1 q^{n/2})^2$ (p) if $n \equiv 0$ (4).

PROOF. $h_E = 1 + q^n - V_n$ so this follows directly from Lemma 1, and $V_0 = 2$.

PROPOSITION 4. If char $F \neq 2$ and E/F is the constant extension of degree 3 then $h_B \equiv 0$ (2).

PROOF. We may assume $2 \nmid h_F$. Then $q \equiv 1$ (2) and from (17) we have $k = c_1 + c_2 h_F + c_3 h_F^2$, with $h_F \equiv c_1 \equiv c_3 \equiv 1$ (2), $c_2 \equiv 0$ (2).

PROPOSITION 5. Let p be an odd prime, $p \neq \text{char } F$, and such that $|K| = q \equiv 1$ (p). If $p \nmid h_F$ then $p \mid h_E$ for E/F a constant extension of degree dividing $(p^2-1)/2$.

PROOF. As earlier let $\Delta = [1+q-h_F]^2-4q$. Then since $h_E = 1+q^n-V_n$ we see from Lemma 2 that if $(\Delta/p)=1$, n=p-1 suffices and if $(\Delta/p)=-1$, n=p+1 since $q\equiv 1$ (p). If $p\mid \Delta$ then $(1+q-h_F)^2-4q\equiv 0$ (p), and since $q\equiv 1$ (p) we conclude $h_F(4-h_F)\equiv 0$ (p). By hypothesis $p\nmid h_F$ so $h_F\equiv 4$ (p). From (17) with n=2 we find $k=2(q+1)-h_F$; thus $k\equiv 0$ (p) if $h_F\equiv 4$ (p), and in this case an extension of degree 2 suffices. In all three possibilities $n\mid (p^2-1)/2$.

COROLLARY. If p is an odd prime, $p \neq \text{char } F$, then $p \mid h_E$ for a constant extension E/F of degree dividing $f((p^2-1)/2)$ where f = ord q(p).

BIBLIOGRAPHY

- 1. G. Chrystal, A textbook of algebra. Vol. II, A. and C. Black, Edinburgh, 1889; reprint of 6th ed., Chelsea, New York.
- 2. M. Eichler, Introduction to the theory of algebraic numbers and functions, Birkhäuser, Basel, 1963; English transl., Pure and Appl. Math., vol. 23, Academic Press, New York, 1966. MR 29 #5821; MR 35 #160.
- 3. H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper. I, J. Reine Angew. Math. 175 (1936), 55-62.
- 4. J. Leitzel, Galois cohomology and class number in constant extensions of algebraic function fields, Proc. Amer. Math. Soc. 22 (1969), 206-208.
- 5. E. Lucas, Théorie des fonctions numériques simplement pérodiques, Amer. J. Math. 1 (1878), 184-239; 289-321.

OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210