CLASS NUMBER IN CONSTANT EXTENSIONS
OF ELLIPTIC FUNCTION FIELDS

JAMES R. C. LEITZEL

ABsTrACT. For F/K a function field of genus one having the
finite field K as field of constants and E the constant extension of
degree n we give explicitly the class number of the field E as a poly-
nomial expression in terms of the class number of F and the order of
the field K. Applications are made to determine the degree of a con-
stant extension E necessary to have a predetermined prime p occur
as a divisor of the class number of the field E.

Let F/K be a function field in one variable with exact field of con-
stants K, a finite field having g elements. The order of the finite group
of divisor classes of degree zero is the class number kr. Let E denote
the constant extension of degree # and kg the class number of E. It is
known that kg =khr for some integer k. In this note we give an ex-
plicit determination of k in the particular case that F has genus one
and give several applications of it. Precisely, we prove the

TrEOREM. If F/K is a function field with genus one and E/F is the
constant extension of degree n then

/tE = Z (—l)l—lczll;-

I=1

(n=1/2] - — 2
o= E (—1)s n (nj ]) (ﬂ l ]) gi(1 + g)m21.

=0 n—7j

where

The applications give the degree of a constant extension E that must
be made for a given prime p to occur as a divisor of kg.

We begin with some preliminary observations on the zeta function
of F and some results on binomial expansions. For a field F as de-
scribed above, the zeta function is given by

L(g™)
1 =g —q¢

where L(u) is a polynomial with rational integral coefficients of de-
gree 2g, g the genus of F, [2]. It is known that L(1) =hg. In fact if
Lu)=Y Poam’=[]%, (1—uu) we have ap=1, as=¢° and

Cr(s) =
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ay=N;—(14¢). Here N, denotes the number of prime divisors of de-
gree one for the field F. In a constant extension of degree # the poly-
nomial numerator is given by

29
La(w) = I (1 — aiu).
i1
Thus the number of prime divisors of degree one in the extension of
degree n is given

29
(1) No=1+¢"— 2 ai.
i=1

If we assume that F has genus one, then also E has genus one since
Fis conservative. Hence L,(u) is a quadratic polynomial for all » and
the class number is precisely N,, the number of prime divisors of de-
gree one. In particular we have Lp(u)=1—[14+qg—hrlu-+qu? The
formula (1) involves the reciprocals of the roots; hence in our further
work we shall be concerned with the following two relations:

(2) L*(x)=x2—[14g—hr]x+q with roots «, B.

3) hg=1+4¢"— (a"+B") giving the class number for a constant
extension of degree n.

As a first step we collect some results on the roots of a quadratic
polynomial such as (2). Since we can be more general, we assume we
have given a polynomial x2=Px—Q with P and Q not necessarily
relatively prime. Our discussion is adapted from Lucas [5], and we
repeat his proofs for convenience. If ¢, 8 denote the roots of x?—Px
+ Q=0 then, setting § =a—f3, we have the following relations:

a+B=P, 2 = P + 3,
€Y af = Q, 28="P —35,
A=Pr—40, 8 =A.
Wedefine V,=a"+B"and it is easy to check that we have the follow-
ing recursion: Vyyo=PV,1 1 —QV,.

In the discussion which follows we make use of two identities
which can be found in Chrystal [1, pp. 178-179].

(/2 7

2 (=1

X+l — yrtt [n/2]

(" T 7| n—2j
7 Zo:(—l)( ; >(XY)(X+Y) .

5 X+ (" J_]) (XT)(X + 1),

n—j

(6)
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From the relations in (4) we have

(7) gt = (P + a)" = i (ﬂ) Pn—vav’
y=0 \V

®) Igr = (P —5)n = 3 (_1),(”) Jr—
y=0 14

Adding these we conclude, using the definition of V, and (4),

©) 2Va=(P+o)+(P—0r =23 (") Pv5 (v even)

y=0 \V
which gives

[n/2] n
(10) 21y, = ) <2 ) Pr2iAd,
J

j=0

On the other hand if we set X =P+48, Y=P—4§ in (5) we conclude
n—j . A
(" 77) aoyapy-s
J

[n/2) ”

(11) 22V, = D (—1)/

=0 n—j

which after simplification yields

(n/2) —_—
(12) Va =éz (—1) " .<n ) ]> Qip2i,
J

j=0 n—=7

LemMA 1. If p is a prime and pIP, then V,=(—Q)"2V(p) if n is
even and V,=0 (p) if n is odd.

Proor. From the recursion relations on V, we see Vo= —QV, (p),
V3:=0 (p) and the result follows by induction.

LevMmaA 2. If p is an odd prime, then
(@) of (A/p)=1 we have V,_1=2 (p) and
(b) 1f (A/p) = —1 we have V,1=2Q (p).

Proor. (a) Since A®»-D/2=1 (p) setting n=p—1 in (10) gives

2072, = Prl (P - 1>Pp—34 4+ ... 4 A2,
2

(P;l)sup):

But

thus we have
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Prtl — AGHD/2
Wy = e (D).
Now Pr+l=P? (p) and A»*D/2=A (p); thus
277, =1 (p)

and (a) follows.
If (A/p)= —1 then A»~P/2= —1 (p) and setting n=p-+1 in (10)
gives

p+1
2PV 1 = PPl 4 ) PPIA + .-« o AGFDI2

p+1
=0 .
( 2j) (2)

Thus 2Vpu=2?V,1=P2—A=4Q (p) and (b) follows.
PROOF OF THEOREM. Specializing these comments now to (2) we
have P=14¢—hr and Q=g¢. Thus from (12) we get

[n/2] —
13) - 5 -1y (" . ]) L+ q — bl
J

n—j

but

Rearranging terms in (13) to give a polynomial expression in kr we
find

(14) Ve =2 (_1)161’!;
1=0
where
[n=1/2] — -2
19 a= % (" .’) (" ’) g1+ gt
=0 n—j3\ j !

The ¢, are rational integers since

n (n—j) n(n—j—1> 2(n—j> <n—j—1>
n—=j\ J J\Nj—1 j J
It is easy to check that ¢, =1 and ¢,_1=n(1+4¢). Using the identity

(5) we find co=1+g"and (6) gives c; =n((¢g"—1)/(g—1)). Substituting
(14) and the value of ¢¢ in (3) we find

(16) he = 3 (—1) e
l=1
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Consequently since kg =khr we have explicitly determined % as a
polynomial expression in kr; namely

a7 E=> (=) "chr .
=1

We state our applications of these results in the following proposi-
tions:

ProrosritioN 1. If p=char F then

(a) if hr=1 (p) we have hg=1 (p) for all finite constant extensions
E;
b) if he#Zl (p) and f=ord (1—hr) mod p then hg=0 (p) for
deg(E/F)=f.

Proor. From (15) we find ¢;=(}) (p) since ¢=0 (p). Thus from (16)
we get

(18) hp= 2 (—1)'"1(;’) he (p),
=1

which after rewriting becomes

(19) hg=1— 1 —hr)" (p)

and the proposition follows.

Note. These conclusions are compatible with statements on the
p-rank of the group of divisor classes of degree zero in elliptic function
fields of characteristic p over an algebraically closed field of constants
as given by Hasse [3].

ProrosiTiON 2. If p is a prime and pmllhp, m=1, then p'"“] kg for
a constant extension E/ F of degree n if and only if p] n((g"—1)/(g—1)).
Proor. From (17) since p| kr we have pl k if and only if p] ¢ and
a = n((g" — 1)/(g — 1)).
[ ?)OROLLARY. If p=char F then pm*'|hg if and only if p|n (Leitzel
4]).

ProrosritioN 3. If p[ 14-g—"hr then for a constant extension E of de-
gree n we have

(@) he=14¢" (p) if n is odd,

(b) he=(1+¢"?)2 (p) if n=2 (4),

(c) he=(1—¢"?)? (p) if n=0 (4).

PRrOOF. hg=1+4¢"*—V, so this follows directly from Lemma 1, and
Vo=2.
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ProrosiTiON 4. If char F£2 and E/F is the constant extension of
degree 3 then hg=0 (2).

ProoF. We may assume 2{kr. Then ¢=1 (2) and from (17) we
have k=ci+chr+cshy, with hrp=ci=c;=1 (2), c2=0 (2).

ProPOSITION 5. Let p be an odd prime, p~char F, and such that
IK] =qg=1(p). If pthr then pl hg for E/F a constant extension of de-
gree dividing (p2—1)/2.

PROOF. As earlier let A=[14g—hr]2—4q. Then since hg=1-+¢"
— V. we see from Lemma 2 that if (A/p) =1, n=p—1 suffices and if
(A/p)=—1, n=p+1 since ¢g=1 (p). If p|A then (14+qg—hr)2—4q
=0 (p), and since g=1 (p) we conclude kr(4—hr)=0 (p). By hy-
pothesis plhr so hr=4 (p). From (17) with n=2 we find k=2(g+1)
—hp; thus k=0 (p) if hrp=4 (p), and in this case an extension of de-
gree 2 suffices. In all three possibilities nI (p2—1)/2.

COROLLARY. If p is an odd prime, p #~char F, then pl kg for a con-
stant extension E/F of degree dividing f((p2—1)/2) where f=ord g (p).

BIBLIOGRAPHY

1. G. Chrystal, 4 textbook of algebra. Vol. 11, A. and C. Black, Edinburgh, 1889;
reprint of 6th ed., Chelsea, New York.

2. M. Eichler, Introduction to the theory of algebraic numbers and functions, Birk-
hduser, Basel, 1963; English transl., Pure and Appl. Math., vol. 23, Academic Press,
New York, 1966. MR 29 #5821; MR 35 #160.

3. H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkorper. I, J. Reine
Angew. Math. 175 (1936), 55-62.

4. J. Leitzel, Galois cohomology and class number in constant extensions of algebraic
function fields, Proc. Amer. Math. Soc. 22 (1969), 206-208.

5. E. Lucas, Théorie des fonctions numériqgues simplement pérodigues, Amer. J.
Math. 1 (1878), 184-239; 289-321.

Ounro State University, CoLuMBus, OHIO 43210



