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Abstract. For F/K a function field of genus one having the

finite field K as field of constants and E the constant extension of

degree n we give explicitly the class number of the field £ as a poly-

nomial expression in terms of the class number of Fand the order of

the field K. Applications are made to determine the degree of a con-

stant extension E necessary to have a predetermined prime p occur

as a divisor of the class number of the field E.

Let F/K be a function field in one variable with exact field of con-

stants K, a finite field having q elements. The order of the finite group

of divisor classes of degree zero is the class number hF. Let E denote

the constant extension of degree n and hs the class number of P. It is

known that hs = khF for some integer k. In this note we give an ex-

plicit determination of k in the particular case that P has genus one

and give several applications of it. Precisely, we prove the

Theorem. If F/K is a function field with genus one and E/F is the

constant extension of degree n then

he =22 (—1)    cihp
2-1

where

ln-m] n    fn_ j\   ,n _ 2A
ci=   £   (-1)''-:(     .    )(     .   •/V(l+<7)"-2^.

;_o n — j\   j    / \     I     /

The applications give the degree of a constant extension E that must

be made for a given prime p to occur as a divisor of hs-

We begin with some preliminary observations on the zeta function

of P and some results on binomial expansions. For a field P as de-

scribed above, the zeta function is given by

f F(s) =-
(1 - cT)(l - g1-)

where L(u) is a polynomial with rational integral coefficients of de-

gree 2g, g the genus of P, [2]. It is known that P(l) =hF. In fact if

L(u)= 2~Jt"-o a.-«*'= ITi-i (1— aiu)    we    have   a0 = l,    a2g = qa,   and
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ai = Ni — (l+o). Here Ni denotes the number of prime divisors of de-

gree one for the field P. In a constant extension of degree re the poly-

nomial numerator is given by

2»

Lniu)   =   U (1   — CtiU).
•=1

Thus the number of prime divisors of degree one in the extension of

degree re is given

(1) Nn = l+qn-zZ «"•
t-i

If we assume that F has genus one, then also E has genus one since

F is conservative. Hence L„iu) is a quadratic polynomial for all re and

the class number is precisely Nn, the number of prime divisors of de-

gree one. In particular we have LF(u) = l—[l+q — hF]u + qu2. The

formula (1) involves the reciprocals of the roots; hence in our further

work we shall be concerned with the following two relations:

(2) L*ix) =x2— [l+q — hF]x+q with roots a, 8.

(3) he = l+qn — (an+Bn) giving the class number for a constant

extension of degree re.

As a first step we collect some results on the roots of a quadratic

polynomial such as (2). Since we can be more general, we assume we

have given a polynomial x2 = Px — Q with P and Q not necessarily

relatively prime. Our discussion is adapted from Lucas [5], and we

repeat his proofs for convenience. If a, B denote the roots of x2—Px

+ Q = 0 then, setting 5=a — 8, we have the following relations:

a + 8 = P, 2a = P + 8,

(4) «B = Q, 28 = P-8,

A = P2 - AQ,        82 = A.

We define Vn=an+Bn and it is easy to check that we have the follow-

ing recursion: Vn+i = PVn+i — QVn.

In the discussion which follows we make use of two identities

which can be found in Chrystal [l, pp. 178-179].

(^' n    (n - j\

(5) X" + F» = zZ (-1)''-(     .     ) (XY)'(X + YY~2',
,-0 n—j\   j    /

y-n+l _   J/n+l [n/2] fn   _   j\

(6) —-— =  zZ(-iy(     .    ) (XY)i(X + F)-«.
X — Y ,=0 \   J    /
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From the relations in (4) we have

(7) 2"a" = (P + 5)" = JI (   ) Pn-*°",
,=o V /

(8) 2»0" = (P - 5)" = J2 (-1)' (    j Pn-"5".
,=0 V I

Adding these we conclude, using the definition of Vn and (4),

(9) 2"F„ = (P + *)» + (P -5)» = 2 22 () P"-^'        (v even)

which gives

(10) 2»-1F„ = Z (     ) P"-2yA'.
,_o \2//

On the other hand if we set A = P + 5, F = P —5 in (5) we conclude

[n/21 w       /w _ j\

(11) 2"F„ = Z (-1)'-:       .    ) (4g)*(2P)-«

which after simplification yields

[n/2] w      /» — j\

(12) Vn=i22(- IV-:      .    ) Q>P"-2J.

Lemma 1. If p is a prime and p\P, then V„ = ( — Q)"l2Vo(p) if n is

even and Vn = 0 (p) if n is odd.

Proof. From the recursion relations on Vn we see V2= — QV0 (p),

V3 = 0 (p) and the result follows by induction.

Lemma 2. If p is an odd prime, then

(a) if (A/p) = 1 we have Vp-x = 2 (p) and

(b) if (A/p)= -1 we have VP+1 = 2Q (p).

Proof, (a) Since A(p-1)/2=T (p) setting n = p — 1 in (10) gives

2^-2Fp_1 = P^1 + ( JPp-'A + • • • + A^»/2.

But

thus we have
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pp+1  _   A.(p+1>/2

2^2Fp_i = - (p).
P2 - A

Now pp+i = P2 (p) and A("+1)'2=A ip); thus

2*-2Fp_, - 1 ip)

and (a) follows.

If iA/p) = -l then A(p-1}'2=;-1 ip) and setting n = p+l in (10)

gives

2*FP+1 = PP+1 + r J P»-«A + ■ • • + A<p+d/2

but

Thus 2Fj,+i = 2"FJ)+i = P2-A = 4<2 (£) and (b) follows.
Proof of theorem. Specializing these comments now to (2) we

have P= l+q — hF and Q = q. Thus from (12) we get

[n/2] n     (n — i\    r

(13) vn= zZ {-IV-(        ) q'[i + q - hF]n-v.
y=o n - j\   j    /

Rearranging terms in (13) to give a polynomial expression in hF we

find

(14) Vn=zZi-l)lcihF
i-o

where

tn-£/2] n      ,n _ ,•>.   in _ 2A

(is)   ci= JZ {-iy-.(   /)(   ,   )^(i + ?)-2^.
,-=o n — j \   j    / \     I     /

The cj are rational integers since

re     /« —A       n /n — j — 1\        fn — j\      /n — j — 1\

n -j\   j    )       j\j-l)        \   j    /       \       j        I

It is easy to check that c„ = 1 and cn-i = «(1 +q)- Using the identity

(5) wefindco = l+gnand (6) givesCi = re((<zn —l)/(g—1)). Substituting

(14) and the value of c0 in (3) we find

(16) hE=lZ{-l)l~1cihlF.
;=i
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Consequently since hE — khF we have explicitly determined k as a

polynomial expression in hF; namely

(17) k = 22(-^)l'1cthlF1.

i-i

We state our applications of these results in the following proposi-

tions:

Proposition 1. If p = char F then
(a) if hF = l (p) we have hE = l (p) for all finite constant extensions

E;
(b) if hFf^l (p) and / = ord (1 — hF) mod p then hE = 0 (p) for

deg(E/F) =/.

Proof. From (15) we find c* = (") (p) since c? = 0 (p). Thus from (16)

we get

as) /^zt-D^Q^- ip),
which after rewriting becomes

(19) km = 1 - (1 - hPy (p)

and the proposition follows.

Note. These conclusions are compatible with statements on the

p-rank of the group of divisor classes of degree zero in elliptic function

fields of characteristic p over an algebraically closed field of constants

as given by Hasse [3].

Proposition 2. If p is a prime and pm\\hF, m^l, then pm+1\ hE for

a constant extension E/Fof degree n if and only if p\n((qn — 1)/(q — 1)).

Proof. From (17) since p\hF we have p\ k if and only if p\ Ci and

ci = n((q" - l)/(q - 1)).

Corollary. If p = char P then pm+1\ hE if and only if pin (Leitzel

[4])-

Proposition 3. If p\ l+q — hF then for a constant extension E of de-

gree n we have

(a) hE = l+qn (p) if n is odd,

(b) ^ = (1+^/2)2 (p) if w = 2 (4),

(c) hE = (l-qnl2)2 (p) if n = 0 (4).

Proof. hE = l+qn— Vn so this follows directly from Lemma 1, and

F0 = 2.
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Proposition 4. // char F?*2 and E/F is the constant extension of

degree 3 then hs = 0 (2).

Proof. We may assume 2\hF. Then q = l (2) and from (17) we

have k = Ci+CihF+CiHf, with hF=-Ci=c3 = l (2), c2 = 0 (2).

Proposition 5. Let p be an odd prime, p Cellar F, and such that

\K\ =<7 = 1 ip). If p\hF then p\hs for E/F a constant extension of de-

gree dividing ip2 — l)/2.

Proof. As earlier let A= [l+q — hF]2 — Aq. Then since hB=l+qn

— Vn we see from Lemma 2 that if {A/p) = 1, n = p — 1 suffices and if

(A/p)=-l, n = p + l since q = l ip). If p\A then il+q-hF)2-4q

= 0 ip), and since q = l (p) we conclude hFi4: — hF)=0 ip). By hy-

pothesis p\hF so hF = A ip). From (17) with « = 2 we find k = 2iq + l)

— hF; thus k = 0 ip) if hF = 4 ip), and in this case an extension of de-

gree 2 suffices. In all three possibilities re| ip2 —1)/2.

Corollary. If p is an odd prime, p?*char F, then p\ he for a con-

stant extension E/F of degree dividing f Up2 —I)/2) where f = ord q ip).
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