CLASS NUMBER IN CONSTANT EXTENSIONS OF ELLIPTIC FUNCTION FIELDS

JAMES R. C. LEITZEL

Abstract

For F / K a function field of genus one having the finite field K as field of constants and E the constant extension of degree n we give explicitly the class number of the field E as a polynomial expression in terms of the class number of F and the order of the field K. Applications are made to determine the degree of a constant extension E necessary to have a predetermined prime p occur as a divisor of the class number of the field E.

Let F / K be a function field in one variable with exact field of constants K, a finite field having q elements. The order of the finite group of divisor classes of degree zero is the class number h_{F}. Let E denote the constant extension of degree n and h_{E} the class number of E. It is known that $h_{E}=k h_{F}$ for some integer k. In this note we give an explicit determination of k in the particular case that F has genus one and give several applications of it. Precisely, we prove the

Theorem. If F / K is a function field with genus one and E / F is the constant extension of degree n then

$$
h_{E}=\sum_{l=1}^{n}(-1)^{l-1} c_{l} h_{F}^{l}
$$

where

$$
c_{l}=\sum_{j=0}^{[n-1 / 2]}(-1)^{j} \frac{n}{n-j}\binom{n-j}{j}\binom{n-2 j}{l} q^{j}(1+q)^{n-2 j-l} .
$$

The applications give the degree of a constant extension E that must be made for a given prime p to occur as a divisor of h_{E}.

We begin with some preliminary observations on the zeta function of F and some results on binomial expansions. For a field F as described above, the zeta function is given by

$$
\zeta_{F}(s)=\frac{L\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)}
$$

where $L(u)$ is a polynomial with rational integral coefficients of degree $2 g, g$ the genus of F, [2]. It is known that $L(1)=h_{F}$. In fact if $L(u)=\sum_{i=0}^{2 g} a_{i} u^{i}=\prod_{i=1}^{2 g}\left(1-\alpha_{1} u\right)$ we have $a_{0}=1, a_{2 g}=q^{0}$, and

Received by the editors September 2, 1969.
A MS Subject Classifications. Primary 1078; Secondary 1278, 1435.
Key Words and Phrases. Genus one, constant extension, binomial expansions.
$a_{1}=N_{1}-(1+q)$. Here N_{1} denotes the number of prime divisors of degree one for the field F. In a constant extension of degree n the polynomial numerator is given by

$$
L_{n}(u)=\prod_{i=1}^{2 g}\left(1-\alpha_{i}^{n} u\right)
$$

Thus the number of prime divisors of degree one in the extension of degree n is given

$$
\begin{equation*}
N_{n}=1+q^{n}-\sum_{i=1}^{2 g} \alpha_{i}^{n} \tag{1}
\end{equation*}
$$

If we assume that F has genus one, then also E has genus one since F is conservative. Hence $L_{n}(u)$ is a quadratic polynomial for all n and the class number is precisely N_{n}, the number of prime divisors of degree one. In particular we have $L_{F}(u)=1-\left[1+q-h_{F}\right] u+q u^{2}$. The formula (1) involves the reciprocals of the roots; hence in our further work we shall be concerned with the following two relations:
(2) $L^{*}(x)=x^{2}-\left[1+q-h_{F}\right] x+q$ with roots α, β.
(3) $h_{E}=1+q^{n}-\left(\alpha^{n}+\beta^{n}\right)$ giving the class number for a constant extension of degree n.

As a first step we collect some results on the roots of a quadratic polynomial such as (2). Since we can be more general, we assume we have given a polynomial $x^{2}=P x-Q$ with P and Q not necessarily relatively prime. Our discussion is adapted from Lucas [5], and we repeat his proofs for convenience. If α, β denote the roots of $x^{2}-P x$ $+Q=0$ then, setting $\delta=\alpha-\beta$, we have the following relations:

$$
\begin{align*}
\alpha+\beta & =P, & & 2 \alpha=P+\delta, \\
\alpha \beta & =Q, & & 2 \beta=P-\delta, \tag{4}\\
\Delta & =P^{2}-4 Q, & & \delta^{2}=\Delta .
\end{align*}
$$

We define $V_{n}=\alpha^{n}+\beta^{n}$ and it is easy to check that we have the following recursion: $V_{n+2}=P V_{n+1}-Q V_{n}$.

In the discussion which follows we make use of two identities which can be found in Chrystal [1, pp. 178-179].

$$
\begin{align*}
& \text { (5) } \quad X^{n}+Y^{n}=\sum_{j=0}^{[n / 2]}(-1)^{j} \frac{n}{n-j}\binom{n-j}{j}(X Y)^{j}(X+Y)^{n-2 j}, \tag{5}\\
& \text { (6) } \frac{X^{n+1}-Y^{n+1}}{X-Y}=\sum_{j=0}^{[n / 2]}(-1)^{j}\binom{n-j}{j}(X Y)^{j}(X+Y)^{n-2 j} .
\end{align*}
$$

From the relations in (4) we have

$$
\begin{align*}
& 2^{n} \alpha^{n}=(P+\delta)^{n}=\sum_{\nu=0}^{n}\binom{n}{\nu} P^{n-\nu} \delta^{\nu} \tag{7}\\
& 2^{n} \beta^{n}=(P-\delta)^{n}=\sum_{\nu=0}^{n}(-1)^{\nu}\binom{n}{\nu} P^{p-\nu} \delta^{\nu} \tag{8}
\end{align*}
$$

Adding these we conclude, using the definition of V_{n} and (4),
(9) $\quad 2^{n} V_{n}=(P+\delta)^{n}+(P-\delta)^{n}=2 \sum_{\nu=0}^{n}\binom{n}{\nu} P^{n-\nu \delta^{\nu}} \quad$ (ν even $)$
which gives

$$
\begin{equation*}
2^{n-1} V_{n}=\sum_{j=0}^{[n / 2]}\binom{n}{2 j} P^{n-2 j} \Delta^{j} \tag{10}
\end{equation*}
$$

On the other hand if we set $X=P+\delta, Y=P-\delta$ in (5) we conclude

$$
\begin{equation*}
2^{n} V_{n}=\sum_{j=0}^{[n / 2]}(-1)^{j} \frac{n}{n-j}\binom{n-j}{j}(4 Q)^{j}(2 P)^{n-2 j} \tag{11}
\end{equation*}
$$

which after simplification yields

$$
\begin{equation*}
V_{n}=\sum_{j=0}^{[n / 2]}(-1)^{j} \frac{n}{n-j}\binom{n-j}{j} Q^{j} P^{n-2 j} \tag{12}
\end{equation*}
$$

Lemma 1. If p is a prime and $p \mid P$, then $V_{n} \equiv(-Q)^{n / 2} V_{0}(p)$ if n is even and $V_{n} \equiv 0(p)$ if n is odd.

Proof. From the recursion relations on V_{n} we see $V_{2} \equiv-Q V_{0}(p)$, $V_{3} \equiv 0(p)$ and the result follows by induction.

Lemma 2. If p is an odd prime, then
(a) if $(\Delta / p)=1$ we have $V_{p-1} \equiv 2(p)$ and
(b) if $(\Delta / p)=-1$ we have $V_{p+1} \equiv 2 Q(p)$.

Proof. (a) Since $\Delta^{(p-1) / 2} \equiv 1$ (p) setting $n=p-1$ in (10) gives

$$
2^{p-2} V_{p-1}=P^{p-1}+\binom{p-1}{2} P^{p-3} \Delta+\cdots+\Delta^{(p-1) / 2}
$$

But

$$
\binom{p-1}{2 j} \equiv 1(p)
$$

thus we have

$$
2^{p-2} V_{p-1} \equiv \frac{P^{p+1}-\Delta^{(p+1) / 2}}{P^{2}-\Delta}(p)
$$

Now $P^{p+1} \equiv P^{2}(p)$ and $\Delta^{(p+1) / 2} \equiv \Delta(p)$; thus

$$
2^{p-2} V_{p-1} \equiv 1(p)
$$

and (a) follows.
If $(\Delta / p)=-1$ then $\Delta^{(p-1) / 2} \equiv-1(p)$ and setting $n=p+1$ in (10) gives

$$
2^{p} V_{p+1}=P^{p+1}+\binom{p+1}{2} P^{p-1} \Delta+\cdots+\Delta^{(p+1) / 2}
$$

but

$$
\binom{p+1}{2 j} \equiv 0(p)
$$

Thus $2 V_{p+1} \equiv 2^{p} V_{p+1} \equiv P^{2}-\Delta \equiv 4 Q$ (p) and (b) follows.
Proof of theorem. Specializing these comments now to (2) we have $P=1+q-h_{F}$ and $Q=q$. Thus from (12) we get

$$
\begin{equation*}
V_{n}=\sum_{j=0}^{[n / 2]}(-1)^{j} \frac{n}{n-j}\binom{n-j}{j} q^{j}\left[1+q-h_{F}\right]^{n-2 j} . \tag{13}
\end{equation*}
$$

Rearranging terms in (13) to give a polynomial expression in h_{F} we find

$$
\begin{equation*}
V_{n}=\sum_{l=0}^{n}(-1)^{l} c_{l} h_{F}^{l} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{l}=\sum_{j=0}^{[n-l / 2]}(-1)^{j} \frac{n}{n-j}\binom{n-j}{j}\binom{n-2 j}{l} q^{j}(1+q)^{n-2 j-l} . \tag{15}
\end{equation*}
$$

The c_{l} are rational integers since

$$
\frac{n}{n-j}\binom{n-j}{j}=\frac{n}{j}\binom{n-j-1}{j-1}=2\binom{n-j}{j}-\binom{n-j-1}{j}
$$

It is easy to check that $c_{n}=1$ and $c_{n-1}=n(1+q)$. Using the identity (5) we find $c_{0}=1+q^{n}$ and (6) gives $c_{1}=n\left(\left(q^{n}-1\right) /(q-1)\right)$. Substituting (14) and the value of c_{0} in (3) we find

$$
\begin{equation*}
h_{E}=\sum_{l=1}^{n}(-1)^{l-1} c_{l} h_{F}^{l} . \tag{16}
\end{equation*}
$$

Consequently since $h_{E}=k h_{F}$ we have explicitly determined k as a polynomial expression in h_{F}; namely

$$
\begin{equation*}
k=\sum_{l=1}^{n}(-1)^{l-1} c_{l} h_{F}^{l-1} . \tag{17}
\end{equation*}
$$

We state our applications of these results in the following propositions:

Proposition 1. If $p=$ char F then
(a) if $h_{F} \equiv 1$ (p) we have $h_{B} \equiv 1$ (p) for all finite constant extensions E;
(b) if $h_{F} \not \equiv 1$ (p) and $f=$ ord ($1-h_{F}$) mod p then $h_{F}=0$ (p for $\operatorname{deg}(E / F)=f$.

Proof. From (15) we find $c_{l} \equiv\binom{n}{l}(p)$ since $q \equiv 0(p)$. Thus from (16) we get

$$
\begin{equation*}
h_{B} \equiv \sum_{l=1}^{n}(-1)^{l-1}\binom{n}{l} h_{F}^{l}(p), \tag{18}
\end{equation*}
$$

which after rewriting becomes

$$
\begin{equation*}
h_{E} \equiv 1-\left(1-h_{F}\right)^{n}(p) \tag{11}
\end{equation*}
$$

and the proposition follows.
Note. These conclusions are compatible with statements on the p-rank of the group of divisor classes of degree zero in elliptic function fields of characteristic p over an algebraically closed field of constants as given by Hasse [3].

Proposition 2. If p is a prime and $p^{m} \| h_{F}, m \geqq 1$, then $p^{m+1} \mid h_{E}$ for a constant extension E / F of degree n if and only if $p \mid n\left(\left(q^{n}-1\right) /(q-1)\right)$.

Proof. From (17) since $p \mid h_{F}$ we have $p \mid k$ if and only if $p \mid c_{1}$ and

$$
c_{1}=n\left(\left(q^{n}-1\right) /(q-1)\right) .
$$

Corollary. If $p=$ char F then $p^{m+1} \mid h_{E}$ if and only if $p \mid n$ (Leitzel [4]).
Proposition 3. If $p \mid 1+q-h_{F}$ then for a constant extension E of degree n we have
(a) $h_{E} \equiv 1+q^{n}(p)$ if n is odd,
(b) $h_{E} \equiv\left(1+q^{n / 2}\right)^{2}$ (p) if $n \equiv 2$ (4),
(c) $h_{E} \equiv\left(1-q^{n / 2}\right)^{2}$ (p) if $n \equiv 0$ (4).

Proof. $h_{E}=1+q^{n}-V_{n}$ so this follows directly from Lemma 1, and $V_{0}=2$.

Proposition 4. If char $F \neq 2$ and E / F is the constant extension of degree 3 then $h_{E} \equiv 0$ (2).

Proof. We may assume $2 \nmid h_{F}$. Then $q \equiv 1$ (2) and from (17) we have $k=c_{1}+c_{2} h_{F}+c_{3} h_{P}^{2}$, with $h_{F} \equiv c_{1} \equiv c_{3} \equiv 1$ (2), $c_{2} \equiv 0$ (2).

Proposition 5. Let p be an odd prime, $p \neq$ char F, and such that $|K|=q \equiv 1$ (p). If $p \nmid h_{F}$ then $p \mid h_{E}$ for E / F a constant extension of degree dividing $\left(p^{2}-1\right) / 2$.

Proof. As earlier let $\Delta=\left[1+q-h_{F}\right]^{2}-4 q$. Then since $h_{E}=1+q^{n}$ $-V_{n}$ we see from Lemma 2 that if $(\Delta / p)=1, n=p-1$ suffices and if $(\Delta / p)=-1, n=p+1$ since $q \equiv 1(p)$. If $p \mid \Delta$ then $\left(1+q-h_{F}\right)^{2}-4 q$ $\equiv 0(p)$, and since $q \equiv 1(p)$ we conclude $h_{F}\left(4-h_{F}\right) \equiv 0(p)$. By hypothesis $p \nmid h_{F}$ so $h_{F} \equiv 4(p)$. From (17) with $n=2$ we find $k=2(q+1)$ $-h_{F}$; thus $k \equiv 0(p)$ if $h_{F} \equiv 4(p)$, and in this case an extension of degree 2 suffices. In all three possibilities $n \mid\left(p^{2}-1\right) / 2$.

Corollary. If p is an odd prime, $p \neq \operatorname{char} F$, then $p \mid h_{B}$ for a constant extension E / F of degree dividing $f\left(\left(p^{2}-1\right) / 2\right)$ where $f=\operatorname{ord} q(p)$.

Bibliography

1. G. Chrystal, A textbook of algebra. Vol. II, A. and C. Black, Edinburgh, 1889; reprint of 6th ed., Chelsea, New York.
2. M. Eichler, Introduction to the theory of algebraic numbers and functions, Birkhäuser, Basel, 1963; English transl., Pure and Appl. Math., vol. 23, Academic Press, New York, 1966. MR 29 \#5821; MR 35 \#160.
3. H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper. I, J. Reine Angew. Math. 175 (1936), 55-62.
4. J. Leitzel, Galois cohomology and class number in constant extensions of algebraic function fields, Proc. Amer. Math. Soc. 22 (1969), 206-208.
5. E. Lucas, Théorie des fonctions numériques simplement perodiques, Amer. J. Math. 1 (1878), 184-239; 289-321.

Ohio State University, Columbus, Ohio 43210

