
SUBDIRECT SUMS,  HEREDITARY RADICALS, AND
STRUCTURE SPACES

A. G. HEINICKE

Abstract. If a ring K is subdirectly embedded into the

product 5 of a finite number of rings by a mapping t, then it is

proved that i(H(K))=i(K)f)H(S) ior any hereditary radical H,

and that any structure space of K has the topology of a quotient

space of a structure space of S.

1. In'roduction. In this note we establish two results which deal

with finite subdirect sums of rings. (Rings, here, are associative but

need not have a unity.) The first is concerned with hereditary radicals,

the second with structure spaces.

Suppose that

K-^T[Kj =S
3=1

is a subdirect embedding. That is, suppose that i is a ring mono-

morphism such that the composition of i with each projection pt

maps K onto Kt. We shall prove:

(1) For any hereditary radical property H, i(H(K)) =i(K)r\H(S).

(2) Any structure space of K has the topology of a quotient space

of a structure space of S.

Throughout this note, K, Kj (j= 1, 2, • ■ • , n), i, and 5 will retain

these meanings.

2. Hereditary radicals. For the definitions and properties of

hereditary radicals, we refer to [l ]. Our aim in this section is to prove

Theorem 2.1. If

n

i:K^>S = n^y
j=i

is a subdirect embedding, and if H is any hereditary radical, then

H(i(K))=i(K)r\H(S).

The proof is broken into two steps. Throughout, we shall identify

Kj with its natural image in S. The projection of 5 onto Kj will be
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denoted by pj, j =1,2, • • ■ , n. Thus, for xES we have x = X"=iP;(x)-

Lemma 2.2. For any hereditary radical H, i(H(K))Ei(K)C\H(S).

Proof. For each j, the composite map pA maps K onto Kj. There-

fore  pd(H(K))EH(K/).   Thus,   for  yEHiK),  *(y) = £?_,  pA{y)

ET,UHiKf)=HiS).m
We know that iiK)(~\HiS) is an ideal of iiK). Once we also know

that iiK)C\HiS) is an H-radical ring, it will follow that iiK)r\H(S)

EHiiiK)) =iiHiK)), and the proof of Theorem 2.1 will be complete.

For each j, pjiiiK)f~}HiS)) is an ideal of pfiiK) =Kj, and this

ideal is contained in pjiHiS)) i = HiKf)). Since H is hereditary,

pj{iiK)r\HiS)) is itself an H-radical ring. It is easy to see that

iiK)(~\HiS) is a subdirect sum of the rings pjiiiK)C\HiS)), j=l,

2, ■ ■ ■ , n. The next lemma shows that iiK)r\HiS) is indeed H-radi-

cal, and so the proof of Theorem 2.1 is complete.

Lemma 2.3. Let a ring P be a subdirect sum of H-radical rings Pi,

Pi, • • • , Pn, where H is a hereditary radical. Then P is also an H-

radical ring.

Proof. We do the proof for the case n = 2. The rest follows by in-

duction. The assumptions imply that there are ideals Pi, P2 of P such

that 77^27 = 0 and Pi^P/Tit i=l, 2.
Now Tir\T, = 0, so Pi^(Pi+P2)/P2, and the latter is H-radical,

since it is an ideal of the ZT-radical ring P/Tz. Thus both Ti and

P/Ti are ZT-radical rings. Since extensions of radical rings by radical

rings are always radical, P is thus seen to be H-radical. fl

3. Structure spaces. Let P he a property of rings which is pre-

served under isomorphisms. For any ring K, define FpiK) to be

{I:I is a prime ideal of K, Ij^K, and K/I has property P}. The set

FpiK) has a topology defined by the closure operation

cl(Z) = {lEFPiK):I^nu}

lor each subset U ol FPiK). (Here the notation \~~\U means C\jeuJ-)

Various properties of these topological spaces, and the relations be-

tween the topological properties of the space and algebraic properties

of the ring have been considered by several authors. (See, for exam-

pie, [3].)

Our aim here is to establish the following result:

Theorem 3.1. Let

K^S = n^;
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be a subdirect embedding. Then the map

FP(S) i Fv(i(K))

defined byf(I) =ir\i(K), is a continuous closed mapping onto Fp(i(K)).

From this theorem, the following corollary is immediate.

Corollary 3.2. Under the conditions of the theorem, FP(K) has the

topology of a quotient space of Fp(S).

Proof (of the Corollary). Clearly FP(K) and FP(i(K)) are

homeomorphic, since i is a ring monomorphism. The corollary follows

at once from the theorem and [2, Theorem 3.8, p. 95]. |

Theorem 3.1 will be proved in several steps.

Lemma 3.3. The mapping f, where f (I) =IC\i(K), is indeed a map of
FP(S) into FP(i(K)).

Proof. If I is any proper prime ideal of 5, then, for some t, Kt(X.I-

Since I is prime, KjEI for all jj*t. It follows that I=(If~\Kt) +

y^i^i Kj. Therefore S = I+Kt.

The map pff.K-^Kt is onto Kt, so for any xES there is a k in K

such that pti(k) =pt(x). Then x— i(k) = 2J&t (Pi(x)—pji(k))EI, so

S = i(K)+I. Therefore S/I^L(i(K)+I)/I^i(K)/(i(K)CM). We see
that for IEFp(S), /(/) =irM(K)EFP(i(K)). ■

Lemma 3.4. The mapping f is a continuous mapping onto Fp(i(K)).

Proof. The proof of the continuity of / is a standard result. To

show that/ is onto, for / = 1, 2, • • • , n, let Dt he the ideal of K such

that i(Df) =i(K)r\(2^i*t Kj). This is the kernel of the mapping pti.

Also, (i;,, Dj = 0.

Let QEFp(K). Then (?DlJ"-i £>,- = 0, so QDD, for some t. Define
Q' to be pti(Q)+L^i*t Kj. We shall show that Q'EFP(S) and that

f(Q')=i(Q)-
Now Q' is an ideal of 5, and S/Q'^Kt/pti(Q)=pti(K)/pti(Q)

=K/Q, where this last isomorphism follows since Qf}Dt = ker(pti).

This shows that Q' is indeed a member of FP(S).

Clearly  we   have  i(Q)EQT\i(K).   Conversely,   let  x = i(k)EQ'
C\i(K). Then there is an element q of Q lor which pd(q)=pt(x)

= pti(k). Then *(?-*)-E*« Pd(q-k)Ei(K)r\(zZj^t Kf)=i(Dt)
Qi(Q). Therefore i(k)Ei(Q), and we have QTM(K)=i(Q). That is,

f(Q')=i(Q)-M

Lemma 3.5. The mapping f is a closed mapping.
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Proof. As was seen in the proof of Lemma 3.3, for each proper

prime ideal I of S, there is a / such that 1= iIC\Kt)+ X)jv< Kj.

Furthermore this / is easily seen to be unique. If we define

Ft={lEFPiS):IDY,MtKj}, fori = 1,2, • • • , n, then PP(5) is the
disjoint union of Pi, P», • • • , P„. Furthermore it is easily verified

that each Fj is a closed subset of FPiS). If C is any closed subset of

FpiS), then/(C) = U"=1/(ZjP\C). To prove that/is closed, it suffices

to show that, for a closed C, f(Fj(~\C) is closed.

Let C be closed in FP(S), and let i(Q)Ec\(f(Ftr\C)). Then

UQ) D    n    [Q"r\i(K)]d(zk)ni(K) = i(Dt),

where the Z>y's are as in the proof of the previous lemma. From the

proof of the previous lemma, we see that Q' = pd(Q) + 2Ly< Kj satis-

fies fiQ') =iiQ). We will show that Q'EFtr\C. Let x= £"-i pt(x) be
in n(F(nC), Since £>jj is onto, there isa& in X such that pd(k) = pt(x).

Since any IEFtC\C contains 2ZjV< -^7 it follows that pti(k) =piix) is
in V\(Ftr\C), and also that this intersection contains i(k). Thus,

for I E Ftr\C, we have i(k) G IAt(X) =/(/)• Hence «'(*) G
n {/(/):/G7nc). From the fact thatt(Q)GelifiFtC\C)), we obtain
i(k)Ei(Q) and so ££(). Then pt(x) =pti(k)Epd(Q), and so xGC?'.

This proves that <2'7>ri(pnC), and so Q'GcKpnC) = Ftr\C.
Finally, we have i(Q)=f(Q')Ef(Ftr\C), and so f(FtC\C) is indeed
closed. H

This completes the proof of Theorem 3.1. We conclude by giving a

simple example which shows that the mapping/ need not be an open

mapping.

For any ring K of characteristic p (p a prime), denote by K* the

ring formed by the Cartesian product KXZP (Zp = integers mod p),

where addition is componentwise and multiplication is defined by

(k, n)(k', n') = (kk'+nk'+n'k, nn').

Let 5 be a simple nontrivial Jacobson radical ring of characteristic

p (see [4]), and consider the mapping

i:(S®S)t-*S* ®S*,

where iiis®s', n)) = (5, w) + 7', n). This is easily seen to be a sub-

direct embedding. If we choose P to be the property of being a prime

ring, the mapping/ of Theorem 3.1 induces a continuous closed map

from FP(St@St) onto Fp((S®S)#). It is not an open mapping, how-

ever, for the set T= {S*@0, S*®S} is a closed and open set in

FP(S*®S$), and f(T)= {S©0, S®S} is a closed but not open set in

Fp«S®S)*).
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