SUBDIRECT SUMS, HEREDITARY RADICALS, AND
STRUCTURE SPACES

A. G. HEINICKE

ApsTrACT. If a ring K is subdirectly embedded into the
product S of a finite number of rings by a mapping ¢, then it is
proved that {(H(K))=4(X)NH(S) for any hereditary radical H,
and that any structure space of K has the topology of a quotient
space of a structure space of .S.

1. In'roduction. In this note we establish two results which deal
with finite subdirect sums of rings. (Rings, here, are associative but
need not have a unity.) The first is concerned with hereditary radicals,
the second with structure spaces.

Suppose that

Jj=1

is a subdirect embedding. That is, suppose that z is a ring mono-
morphism such that the composition of ¢ with each projection p,
maps K onto K,. We shall prove:

(1) For any hereditary radical property H, :(H(K)) =1(K)MNH(S).

(2) Any structure space of K has the topology of a quotient space
of a structure space of S.

Throughout this note, K, K; (j=1,2, + - -, n), 7, and S will retain
these meanings.

2. Hereditary radicals. For the definitions and properties of
hereditary radicals, we refer to [1]. Our aim in this section is to prove

THEOREM 2.1. If
i:K—S=]] K,
=1
is a subdirect embedding, and if H s any hereditary radical, then
H@#E(K)) =i(K)MNH(S).

The proof is broken into two steps. Throughout, we shall identify
K; with its natural image in S. The projection of S onto K; will be
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denoted by p;,i=1,2, - - -, n. Thus, for x €S we have x = Y_7_, p;(x).
LemMA 2.2. For any hereditary radical H, «(H(K)) C2(K)MNH(S).

Proor. For each j, the composite map p; maps K onto K;. There-
fore pi(H(K))CH(K;). Thus, for yEH(K), i(y)=2 5.1 p:i(y)
€2 HK,)=H(S). 1

We know that ¢(K)MNH(S) is an ideal of 7(K). Once we also know
that {(K)MH(S) is an H-radical ring, it will follow that :(K)MN\H(S)
CH((K))=1(H(K)), and the proof of Theorem 2.1 will be complete.

For each j, p;(t(K)MH(S)) is an ideal of p;1(K)=Kj, and this
ideal is contained in p,(H(S)) (=H(K;)). Since H is hereditary,
p;,0(K)YNH(S)) is itself an H-radical ring. It is easy to see that
1(K)MH(S) is a subdirect sum of the rings p;G(K)NH(S)), j=1,
2, - - -, n. The next lemma shows that ¢(K)MH(S) is indeed H-radi-
cal, and so the proof of Theorem 2.1 is complete.

LevMMA 2.3. Let a ring P be a subdirect sum of H-radical rings Py,
Py, + -+, P, where H is a hereditary radical. Then P is also an H-
radical ring.

ProoF. We do the proof for the case n=2. The rest follows by in-
duction. The assumptions imply that there are ideals T3, T of P such
that 797N\ T,=0 and P,‘EP/T{, 1=1, 2.

Now TnM\T:=0, so T1=2(T1+7T,)/T>., and the latter is H-radical,
since it is an ideal of the H-radical ring P/T.. Thus both 7T, and
P/ T, are H-radical rings. Since extensions of radical rings by radical
rings are always radical, P is thus seen to be H-radical. ||}

3. Structure spaces. Let P be a property of rings which is pre-
served under isomorphisms. For any ring K, define Fp(K) to be
{I:I is a prime ideal of K, I#K, and K/I has property P}. The set
Fp(K) has a topology defined by the closure operation

d(U) = {I EF(K):I DU}

for each subset U of F,(K). (Here the notation [(1U means N;epJ.)

Various properties of these topological spaces, and the relations be-
tween the topological properties of the space and algebraic properties
of the ring have been considered by several authors. (See, for exam-

ple, [3].)
Our aim here is to establish the following result:

THEOREM 3.1. Let

k55 =11k

j=1
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be a subdirect embedding. Then the map

£ L B8
defined by f(I) = INi(K), is a continuous closed mapping onto F,(i(K)).

From this theorem, the following corollary is immediate.

COROLLARY 3.2. Under the conditions of the theorem, Fp(K) has the
topology of a quotient space of Fp(S).

ProoF (oF THE CoroLLARY). Clearly Fp(K) and Fp(i(K)) are
homeomorphic, since 7 is a ring monomorphism. The corollary follows
at once from the theorem and [2, Theorem 3.8, p. 95]. |l

Theorem 3.1 will be proved in several steps.

LeEmMMA 3.3. The mapping f, where f(I) = INi(K), is indeed a map of
Fp(S) into Fr(i(K)).

Proor. If I is any proper prime ideal of S, then, for some ¢, K, I.
Since [ is prime, K;CI for all j#¢. It follows that I=({INK,)+
> it K;j. Therefore S=I+K,.

The map pi:K—K, is onto K4, so for any x&S thereisa kin K
such that p.i(k) =p.(x). Then x—i(k) = D ju (p;(x) —psi(k))EI, so
S=1(K)+1I. Therefore S/I=(\E(K)+1I)/I=i(K)/(@Z(K)NI). We see
that for IE Fp(S), f(I)=INi(K)EFr(i(K)). R

LEMMA 3.4. The mapping f is a continuous mapping onto Fp(i(K)).

Proor. The proof of the continuity of f is a standard result. To
show that f is onto, for t=1, 2, - - -, n, let D, be the ideal of K such
that ¢(D.) =4(K)MN (2 ;= K;). This is the kernel of the mapping p.
Also, N}y D;=0.

Let Q€ Fp(K). Then QD] ]}~ D;=0, so QDD, for some ¢. Define
Q’ to be p.2(Q)+ Zj;a K;. We shall show that Q"€ F»(S) and that
f(Q) =1(Q).

Now Q' is an ideal of S, and S/Q'=K,/pi(Q)=pi(K)/pa(Q)
=~K/Q, where this last isomorphism follows since Q DD;=ker(ps).
This shows that Q' is indeed a member of Fp(S).

Clearly we have #(Q)CQ'Mi(K). Conversely, let x=1(k)EQ’
Mi(K). Then there is an element ¢ of Q for which pi(q) =p.(x)
=pea(k). Then i(g—Fk) = D st pilg—k) Ei(K)N (L K;)=3(D))
Ci(Q). Therefore i(k) €4(Q), and we have Q'Mi(K)=14(Q). That is,
£@)=iQ). M

LEMMA 3.5. The mapping f is a closed mapping.
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ProOF. As was seen in the proof of Lemma 3.3, for each proper
prime ideal I of S, there is a ¢ such that I=(NK,) + Z#, K;.
Furthermore this ¢t is easily seen to be unique. If we define
Fi={IEFp(S):ID > jut K;}, for t=1,2, - - -, n, then Fp(S) is the
disjoint union of Fi, Fo, - -+, F,. Furthermore it is easily verified
that each Fjis a closed subset of Fp(S). If C is any closed subset of
Fp(S), then f(C) =U., f(F;NC). To prove that f is closed, it suffices
to show that, for a closed C, f(F;MNC) is closed.

Let C be closed in Fr(S), and let 2(Q) Ecl(f(F./NC)). Then

@5 0 ' niw] > (ZE)Niw - o),

Q'EF.NC et
where the Dj’s are as in the proof of the previous lemma. From the
proof of the previous lemma, we see that Q' = p,i(Q) + 2, K, satis-
fies f(Q") =(Q). We will show that Q& FNC. Let x= Y 7, p.(x) be
in M(F.MNC). Since p4 is onto, there is a k in K such that p,i(k) = p.(x).
Since any I& F,NC contains ;. K;, it follows that p,i(k) = p,(x) is
in M"1(F/NC), and also that this intersection contains 2(k). Thus,
for I&€ F,N\C, we have (k) € I N\ 1(K) = f(I). Hence (k) &€
M{f(I): 1€ F.N\C}. From the fact that i(Q) Ecl(f(F./NC)), we obtain
i(k)E1(Q) and so kEQ. Then p.(x)=pua(k) Epi(Q), and so x&Q'.
This proves that Q' DI(F.NC), and so Q' Ecl(F/NC)=FNC.
Finally, we have 72(Q) =f(Q")&f(F.NC), and so f(F,/NC) is indeed
closed. Kl

This completes the proof of Theorem 3.1. We conclude by giving a
simple example which shows that the mapping f need not be an open
mapping.

For any ring K of characteristic p (p a prime), denote by Kf the
ring formed by the Cartesian product K XZ, (Z,=integers mod p),
where addition is componentwise and multiplication is defined by
(k, n)(k', n') = (k' +nk'+n'k, nn').

Let S be a simple nontrivial Jacobson radical ring of characteristic
p (see [4]), and consider the mapping

(S @ S -5t S,

where i((s®s’, n)) = (s, n) +(s’, n). This is easily seen to be a sub-
direct embedding. If we choose P to be the property of being a prime
ring, the mapping f of Theorem 3.1 induces a continuous closed map
from Fp(St®St) onto Fp((S@.S)*). It is not an open mapping, how-
ever, for the set T={S*®0, S¥@®S} is a closed and open set in
Fp(St@ St), and f(T) = {SGBO, SG}S} is a closed but not open set in
Fp((S®95)).
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