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Abstract. The Perron integral is used to establish an existence

and uniqueness theorem concerning the initial value problem

y'(0 =/(<, >(0), andy((0)=a, for ton the interval /= {'I 0=' = 1 }■

The existence and uniqueness of the solution is obtained by use of

a generalized Lipschitz condition, and a Picard sequence which is

equiabsolutely continuous on /. Also, we prove a theorem on the

uniqueness of solution by a generalization of Gronwall's inequality.

1. Introduction. This paper deals with existence and uniqueness

theorems concerning the i.v.p. (initial value problem)

(1) y'(t) = fit, yit)),        yito) = a,

where fit, yit)), for any continuous y on 1 = {i|0^/^l}, is defined

a.e. (almost everywhere) on I. There is an extensive body of literature

dealing with conditions under which solutions for (1) exist. In most

discussions/ is taken to be integrable in the Lebesgue sense. Here we

use the Perron integral. It was shown by Bauer in [l ] (see also Kamke

[5], McShane [8], Saks [lO]) that the Perron definition of the inte-

gral leads to a generalization of the Lebesgue integral. Northcutt [9]

used the Perron integral, and obtained solutions for (1). The author

[6] has also considered the Perron integral, and established an exis-

tence and uniqueness theorem for a second order nonlinear partial

differential equation.

2. Preliminary theorems. Integration throughout this paper is in

the Perron sense and the following theorems will be used.

Theorem 2.1 (Kamke [5, p. 210]). IffCZP iPerron integrable) on I

and fit) =0 a.e. on I, then, fE& iLebesgue integrable) on I, and for t on

I,f'0f=(£)f!>f.

Corollary 2.1.1. Iff and gEP on I and fit) ^g(0 a.e. on I, then,

for 0&,<t£l, ft f^j\ g.

Received by the editors June 27, 1969.

A MS Subject Classifications. Primary 3404, 3490; Secondary 2645.

Key Words and Phrases. Initial value problem, Lebesgue integral, Perron integral,

bounded variation, Picard sequence, locally absolutely continuous, equicontinuous,

equiabsolutely continuous, Cauchy-Euler methcd, Gronwall inequality.

1 The author wishes to express his thanks to Professor H. J. Ettlinger for his

valuable contributions which led to this research.

34



EXISTENCE AND UNIQUENESS THEOREMS 35

Corollary 2.1.2. If fEP and gE£ on I and f(t)^g(t) a.e. on I,
thenfE£ on I.

Theorem 2.2. If fEP on I and gCB.V. (bounded variation) on I

thenf-gEP on I and fl,f-g=F(t) g(t)-f0 Fdg(s) where F(t) =f'0f.

See Gordon and Lasher [3 ] for an elementary proof.

3. Existence theorems. We prove the following

Theorem 3.1. //

HI. f(t, y) is continuous in yfor t a.e. on I.

H2. f(t, y(t))EP on I for y continuous on I.

H3. /(/, y(t)) ^g(t) a.e. on I where gEP on I.

H4. \f(t, y(t)) -f(t, y*(t)) | ^v(t) \ y(t) -y*(t) \ a.e. on I where vEP
(and hence in £) on I. Then there exists for the i.v.p. (1), a Picard se-

quence, which yields a solution, Tp(t), which is continuous and locally

absolutely continuous (LAC) on I, only if the sequence {f'Q (fn — g)} is

EAC (equiabsolutely continuous) on I.

Lemma 3.1. If
HI. fnEP on I for each counting number n.

H2. Iim„/„(0 =/(/) a.e. on I.
H3. /„(/) =g(0 o,.e. on I for each n where gEP on I. Then, fEP on

I, and lim„ /o/„ =fof only if the sequence {/o [fn— g]} is EAC on I.

The proof of this lemma (see [7]) is based on a corresponding

theorem by Vitali [ll ] for functions integrable in the Lebesgue sense.

Briefly, by Theorem 2.2, (fn — g)E£ on / and from [ll]

lim(JE) f'[fn-g] = (£) f'[f-g].
n J o J 0

Consequently, (f-g)EP, and lim„ f0  \fn — g]=f0 [f~g] and since
gEP on /, then fEP on / and lim„ /0/„ =/0'/.

Proof of Theorem 3.1. Let y0(t) =a;

(2) yn+x(t) =  f f(s, yn(s))ds + a       (n = 0,1, 2, • • • ).

We note that yx(t) is continuous and LAC (see Saks [10, p. 251]) on I.

By induction, we have that yn(t) is continuous and LAC on / for each

counting number n. Define

(3) un(t) = yn+i(t) - yn(t)       (n = 0, 1, 2, • • ■ ).

Then, u0(t) =f'l<sf(s, a)ds and
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(4) unii) = f ' [fis, ynis)) - fis, yn-i(s))]ds.

Under H4, the integral in (4) may be taken in the Lebesgue sense.

Now, since «o(7 is continuous on I, then there exists a number k such

that for t on I. |tt0(7| <k and |«i(7| <hJQv and in general, since

vit) ^0 a.e. on I

(5) | u„it) |   < k T J vT/nl = k I" j vT/nl.

Consequently,     2^i_o|«iW|     converges    uniformly    on    I.    But,

^7o u'(l) =yn+i(t)— yo(t)- Hence, there exists a function yy(t) such

that lim„y„(0 =\p(t) uniformly on I where \p(t) is continuous and LAC

on I. From HI we have lim„/(/, yn(t)) =f(t, \j/(t)) a.e. on I.

Then, H3, and Lemma 3.1, yield

HO =  [ f(s, Hs))ds + ex

where ypih) =a and \p'it) =/(/, \pit)) a.e. on I.    Q.E.D.

Under the hypotheses H1-H3 of Theorem 3.1, and by use of the

Cauchy-Euler method, Northcutt [9] showed that there exists a func-

tion \pit), continuous and LAC, which is a solution of the i.v.p. (1)

only if the sequence {fo[fn — g]} is EAC on Z His method of proof is

based on Ascoli's theorem on a uniformly bounded set of equicontin-

uous functions on I, and on Lemma 3.1. Uniqueness is not to be ex-

pected in this case.

4. Uniqueness theorems.

Theorem 4.1. The solution ^(/) in Theorem 3.1 is unique.

Proof. Assume that there exists for the i.v.p. (1) another solution

yp*it). Let Yil)=yHt)-\p*it) for t on I. Then,

Yit) =  (\f(sA(s))-f(s,r(s))]ds
J '0

and

0 =:  | Y(l) |   g lim k\ (£) j    v\ /n\.

Hence Y(t) =0 lor t on I and uniqueness of solution for (1) follows.

The following involve generalizations of some of the results of

Ettlinger [2].
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Theorem 4.2. If ipx(t) and ip2(t) are LAC on I and satisfy the i.v.p.

(1) in a region R= {(t, y)\ Ogigl, all y}. If further, xpx(t) and \p2(t)

satisfy H2 and H4 of Theorem 3.1 on I. Then, ^x(t) =\p2(t) on I.

A proof of this theorem may be obtained by use of the following

lemma, which is a generalization of Gronwall's lemma [4].

Lemma 4.2.1. // hE£ and gEP on I, x is LAC on I, and satisfy the

differential inequality

(6) x'(l) + h(t)x(t) ^ g(t), a.e. on I.

Then, for 0^t0<t^l,

(7) x(t) ̂ exp (- J h\[f gexpf^J h\ + x(t0)   .

Proof. Since exp(//o h)>0 we have

(8) x'(t) exp ( j   h)+ h(t)x(t) exp ( J   hj ^ g(t) exp ( J   h).

Now, gEP and exp(//0 h) is absolutely continuous on I. Then, by

Theorem 2.2, g-exp(//0 h)EP on I. Furthermore,

+ h(t)x(t) expl   j    h) a.e. on /.

Hence, by Corollary 2.1.1, and (8), we have for t^t0

(9) x(s) exp ( j '*) J  ^ j lg(s) exp ( j 'h),

and statement (7) is thus obtained. We note that the equality in (7),

c/>(/)=exp(-//0 h)[fl0 g exp(fts0h)+<p(t0)], represents a solution for

the linear differential equation x'(t)+h(t)x(t) =g(t).

Corollary 4.2.1. // x(i0)=0 and, a.e. on I, g(t)-0 and x(f)^0,

then x(t)=0 on [t0, l].

Proof of Theorem 4.2. Let x(t) = \ipx(t)-xp2(t)\ on I. Then,

x'(t)^v(t)x(t) a.e. on I. Since x(/0)=0, then for t^t0 and by Cor-

ollary 2.1.1

(10) x(t) 5;   f vx.
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Now, from H4 and by Corollary 2.1.2, \f(t, Hit))-fit, fait))\ EP on
Z and is also integrable in the Lebesgue sense. Hence, for t on I,

H4 yields

(11) *(/) g   f vx.

From (10) and (11) we have on [0, t0]

xit) =   I    vx
J h

and x'it)=vit)xit) a.e. on [0, t0]. Corollary 4.2.1 then yields

xit) =0    on I.

Hence, fait) =fait) on I.

5. Remark. In equation (1), yit) may be considered as a real valued

vector function defined in a Euclidean space of n dimensions. Conclu-

sions follow as in the scalar case.
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