THE PERRON INTEGRAL AND EXISTENCE AND UNIQUENESS THEOREMS FOR A FIRST ORDER NONLINEAR DIFFERENTIAL EQUATION

MANOUG N. MANOUGIAN1

ABSTRACT. The Perron integral is used to establish an existence and uniqueness theorem concerning the initial value problem y'(t) = f(t, y(t)), and $y(t_0) = \alpha$, for t on the interval $I = \{t \mid 0 \le t \le 1\}$. The existence and uniqueness of the solution is obtained by use of a generalized Lipschitz condition, and a Picard sequence which is equiabsolutely continuous on I. Also, we prove a theorem on the uniqueness of solution by a generalization of Gronwall's inequality.

1. **Introduction.** This paper deals with existence and uniqueness theorems concerning the i.v.p. (initial value problem)

(1)
$$y'(t) = f(t, y(t)), \quad y(t_0) = \alpha,$$

where f(t, y(t)), for any continuous y on $I = \{t \mid 0 \le t \le 1\}$, is defined a.e. (almost everywhere) on I. There is an extensive body of literature dealing with conditions under which solutions for (1) exist. In most discussions f is taken to be integrable in the Lebesgue sense. Here we use the Perron integral. It was shown by Bauer in [1] (see also Kamke [5], McShane [8], Saks [10]) that the Perron definition of the integral leads to a generalization of the Lebesgue integral. Northcutt [9] used the Perron integral, and obtained solutions for (1). The author [6] has also considered the Perron integral, and established an existence and uniqueness theorem for a second order nonlinear partial differential equation.

2. Preliminary theorems. Integration throughout this paper is in the Perron sense and the following theorems will be used.

THEOREM 2.1 (KAMKE [5, p. 210]). If $f \subset P$ (Perron integrable) on I and $f(t) \ge 0$ a.e. on I, then, $f \subset \mathcal{L}$ (Lebesgue integrable) on I, and for t on I, $\int_0^t f = (\mathcal{L}) \int_0^t f$.

COROLLARY 2.1.1. If f and $g \subset P$ on I and $f(t) \geq g(t)$ a.e. on I, then, for $0 \leq t_0 < t \leq 1$, $\int_{t_0}^{t} f \geq \int_{t_0}^{t} g$.

Received by the editors June 27, 1969.

AMS Subject Classifications. Primary 3404, 3490; Secondary 2645.

Key Words and Phrases. Initial value problem, Lebesgue integral, Perron integral, bounded variation, Picard sequence, locally absolutely continuous, equicontinuous, equiabsolutely continuous, Cauchy-Euler method, Gronwall inequality.

¹ The author wishes to express his thanks to Professor H. J. Ettlinger for his valuable contributions which led to this research.

COROLLARY 2.1.2. If $f \subset P$ and $g \subset \mathcal{L}$ on I and $f(t) \geq g(t)$ a.e. on I, then $f \subset \mathcal{L}$ on I.

THEOREM 2.2. If $f \subset P$ on I and $g \subset B.V.$ (bounded variation) on I then $f \cdot g \subset P$ on I and $\int_0^t f \cdot g = F(t) \ g(t) - \int_0^t F dg(s)$ where $F(t) = \int_0^t f$.

See Gordon and Lasher [3] for an elementary proof.

3. Existence theorems. We prove the following

THEOREM 3.1. If

H1. f(t, y) is continuous in y for t a.e. on I.

H2. $f(t, y(t)) \subset P$ on I for y continuous on I.

H3. $f(t, y(t)) \ge g(t)$ a.e. on I where $g \subset P$ on I.

H4. $|f(t, y(t)) - f(t, y^*(t))| \le v(t) |y(t) - y^*(t)|$ a.e. on I where $v \subset P$ (and hence in \mathfrak{L}) on I. Then there exists for the i.v.p. (1), a Picard sequence, which yields a solution, $\psi(t)$, which is continuous and locally absolutely continuous (LAC) on I, only if the sequence $\{f_0'(f_n - g)\}$ is EAC (equiabsolutely continuous) on I.

LEMMA 3.1. *If*

H1. $f_n \subset P$ on I for each counting number n.

H2. $\lim_{n} f_n(t) = f(t)$ a.e. on I.

H3. $f_n(t) \ge g(t)$ a.e. on I for each n where $g \subset P$ on I. Then, $f \subset P$ on I, and $\lim_n \int_0^t f_n = \int_0^t f$ only if the sequence $\left\{ \int_0^t \left[f_n - g \right] \right\}$ is EAC on I.

The proof of this lemma (see [7]) is based on a corresponding theorem by Vitali [11] for functions integrable in the Lebesgue sense. Briefly, by Theorem 2.2, $(f_n-g)\subset \mathcal{L}$ on I and from [11]

$$\lim_{n} (\mathfrak{L}) \int_{0}^{t} [f_{n} - g] = (\mathfrak{L}) \int_{0}^{t} [f - g].$$

Consequently, $(f-g) \subset P$, and $\lim_n \int_0^t [f_n-g] = \int_0^t [f-g]$ and since $g \subset P$ on I, then $f \subset P$ on I and $\lim_n \int_0^t f_n = \int_0^t f$.

Proof of Theorem 3.1. Let $y_0(t) = \alpha$;

(2)
$$y_{n+1}(t) = \int_{t_0}^{t} f(s, y_n(s)) ds + \alpha \qquad (n = 0, 1, 2, \cdots).$$

We note that $y_1(t)$ is continuous and LAC (see Saks [10, p. 251]) on I. By induction, we have that $y_n(t)$ is continuous and LAC on I for each counting number n. Define

(3)
$$u_n(t) = y_{n+1}(t) - y_n(t) \quad (n = 0, 1, 2, \cdots).$$

Then, $u_0(t) = \int_{t_0}^t f(s, \alpha) ds$ and

(4)
$$u_n(t) = \int_{t_0}^{t} [f(s, y_n(s)) - f(s, y_{n-1}(s))] ds.$$

Under H4, the integral in (4) may be taken in the Lebesgue sense. Now, since $u_0(t)$ is continuous on I, then there exists a number k such that for t on I, $|u_0(t)| < k$ and $|u_1(t)| < k \int_0^t v$ and in general, since $v(t) \ge 0$ a.e. on I

(5)
$$|u_n(t)| < k \left[\int_0^t v \right]^n / n! \le k \left[\int_0^1 v \right]^n / n!.$$

Consequently, $\sum_{i=0}^{n} |u_i(t)|$ converges uniformly on I. But, $\sum_{i=0}^{n} u_i(t) = y_{n+1}(t) - y_0(t)$. Hence, there exists a function $\psi(t)$ such that $\lim_n y_n(t) = \psi(t)$ uniformly on I where $\psi(t)$ is continuous and LAC on I. From H1 we have $\lim_n f(t, y_n(t)) = f(t, \psi(t))$ a.e. on I.

Then, H3, and Lemma 3.1, yield

$$\psi(t) = \int_{t_0}^t f(s, \psi(s)) ds + \alpha$$

where $\psi(t_0) = \alpha$ and $\psi'(t) = f(t, \psi(t))$ a.e. on *I*. Q.E.D.

Under the hypotheses H1-H3 of Theorem 3.1, and by use of the Cauchy-Euler method, Northcutt [9] showed that there exists a function $\psi(t)$, continuous and LAC, which is a solution of the i.v.p. (1) only if the sequence $\{\int_0^t [f_n-g]\}$ is EAC on I. His method of proof is based on Ascoli's theorem on a uniformly bounded set of equicontinuous functions on I, and on Lemma 3.1. Uniqueness is not to be expected in this case.

4. Uniqueness theorems.

THEOREM 4.1. The solution $\psi(t)$ in Theorem 3.1 is unique.

PROOF. Assume that there exists for the i.v.p. (1) another solution $\psi^*(t)$. Let $Y(t) = \psi(t) - \psi^*(t)$ for t on I. Then,

$$Y(t) = \int_{t_0}^t \left[f(s, \psi(s)) - f(s, \psi^*(s)) \right] ds$$

and

$$0 \leq |Y(t)| \leq \lim_{n} k \left[(\mathfrak{L}) \int_{0}^{1} v \right]^{n} / n!.$$

Hence Y(t) = 0 for t on I and uniqueness of solution for (1) follows. The following involve generalizations of some of the results of Ettlinger [2]. THEOREM 4.2. If $\psi_1(t)$ and $\psi_2(t)$ are LAC on I and satisfy the i.v.p. (1) in a region $R = \{(t, y) \mid 0 \le t \le 1, \text{ all } y\}$. If further, $\psi_1(t)$ and $\psi_2(t)$ satisfy H2 and H4 of Theorem 3.1 on I. Then, $\psi_1(t) = \psi_2(t)$ on I.

A proof of this theorem may be obtained by use of the following lemma, which is a generalization of Gronwall's lemma [4].

LEMMA 4.2.1. If $h \subset \mathcal{L}$ and $g \subset P$ on I, x is LAC on I, and satisfy the differential inequality

(6)
$$x'(t) + h(t)x(t) \le g(t), \text{ a.e. on } I.$$

Then, for $0 \le t_0 < t \le 1$,

(7)
$$x(t) \leq \exp\left(-\int_{t_0}^t h\right) \left[\int_{t_0}^t g \exp\left(\int_{t_0}^s h\right) + x(t_0)\right].$$

Proof. Since $\exp(\int_{t_0}^t h) > 0$ we have

(8)
$$x'(t) \exp\left(\int_{t_0}^t h\right) + h(t)x(t) \exp\left(\int_{t_0}^t h\right) \le g(t) \exp\left(\int_{t_0}^t h\right).$$

Now, $g \subset P$ and $\exp(\int_{t_0}^t h)$ is absolutely continuous on I. Then, by Theorem 2.2, $g \cdot \exp(\int_{t_0}^t h) \subset P$ on I. Furthermore,

$$\frac{d}{dt}\left[x(t)\exp\left(\int_{t_0}^t h\right)\right] = x'(t)\exp\left(\int_{t_0}^t h\right) + h(t)x(t)\exp\left(\int_{t_0}^t h\right) \text{ a.e. on } I.$$

Hence, by Corollary 2.1.1, and (8), we have for $t \ge t_0$

(9)
$$\left[x(s) \exp\left(\int_{t_0}^s h\right)\right]_{t_0}^t \le \int_{t_0}^t g(s) \exp\left(\int_{t_0}^s h\right),$$

and statement (7) is thus obtained. We note that the equality in (7), $\phi(t) = \exp(-\int_{t_0}^t h) \left[\int_{t_0}^t g \exp(\int_{t_0}^s h) + \phi(t_0) \right]$, represents a solution for the linear differential equation x'(t) + h(t)x(t) = g(t).

COROLLARY 4.2.1. If $x(t_0) = 0$ and, a.e. on I, g(t) = 0 and $x(t) \ge 0$, then x(t) = 0 on $[t_0, 1]$.

PROOF OF THEOREM 4.2. Let $x(t) = |\psi_1(t) - \psi_2(t)|$ on I. Then, $x'(t) \le v(t)x(t)$ a.e. on I. Since $x(t_0) = 0$, then for $t \le t_0$ and by Corollary 2.1.1

$$(10) x(t) \ge \int_{t_0}^t vx.$$

Now, from H4 and by Corollary 2.1.2, $|f(t, \psi_1(t)) - f(t, \psi_2(t))| \subset P$ on I, and is also integrable in the Lebesgue sense. Hence, for t on I, H4 yields

$$(11) x(t) \leq \int_{t_0}^t vx.$$

From (10) and (11) we have on $[0, t_0]$

$$x(t) = \int_{t_0}^{t} vx$$

and x'(t) = v(t)x(t) a.e. on $[0, t_0]$. Corollary 4.2.1 then yields

$$x(t) = 0$$
 on I .

Hence, $\psi_1(t) = \psi_2(t)$ on I.

5. **Remark.** In equation (1), y(t) may be considered as a real valued vector function defined in a Euclidean space of n dimensions. Conclusions follow as in the scalar case.

REFERENCES

- 1. H. Bauer, Der Perronsche Integralbegriff und seine Beziehung zum Lebesgueshen, Monatsh. Math. und Physik 26 (1915), 153-198.
- 2. H. J. Ettlinger, Linear derivative inequalities and differential equations, National Math. Mag. 11 (1936), 1-5.
- 3. L. Gordon and S. Lasher, An elementary proof of integration by parts for the Perron integral, Proc. Amer. Math. Soc. 18 (1967), 394-398. MR 35 #1726.
- 4. T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. of Math. (2) 20 (1918/19), 292-296.
- 5. E. Kamke, Das Lebesgue-Stieltjes-Integral, Teubner Verlagsgesellschaft, Leipzig, 1956. MR 18, 384.
- 6. M. N. Manougian, An existence and uniqueness theorem for a nonlinear differential equation, J. Differential Equations (to appear).
- 7. ——, On the convergence of a sequence of Perron integrals, Proc. Amer. Math. Soc. 23 (1969), 320-332.
- 8. E. J. McShane, Integration, Princeton Univ. Press, Princeton, N. J., 1944. MR 6, 43.
- 9. R. A. Northcutt, Perron type differential and integral inequalities, Dissertation, The University of Texas, Austin, Texas, 1968.
- 10. S. Saks, Theory of the integral, 2nd rev. ed., Dover, New York, 1964. MR 29 #4850.
- 11. G. Vitali, Sul integrazione per serie, Rend. Circ. Mat. Palermo 23 (1907), 137-155.

University of South Florida, Tampa, Florida 33620