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Abstract. The purpose of this note is to point out an extension

of the Markov-Kakutani fixed-point theorem to a result on the

existence of a common eigenvector in a cone with a compact base

when acted upon by a commutative family of operators. As an

application, an extension is given of a result of Krein and Rutman

on characteristic functionals.

Our terminology follows [5] and [7], Let K be a compact convex

subset of a locally convex Hausdorff space, and let A iK) denote the

space of all real-valued, continuous, affine maps on K. It is known

(see e.g. [l]) that the map g:K—>iAiK)*, weak*), where g(ft)(f)

=/(&) (JEAiK), kEK), is an affine homeomorphism of K onto the

set of all positive linear functionals on A iK) of norm one. Hence,

qiK) is a compact base for the cone P of positive linear functionals in

iAiK)*, weak*). Every continuous affine map a on K to K gives rise

to a unique continuous, order-preserving, linear operator a' on A iK) *

such that a'iqiK))EqiK) and a = q~1a'q. If 2 is a commutative semi-

group of continuous affine maps on K to K, then the Markov-Kaku-

tani Theorem (cf. [4, p. 456]) asserts the existence of a common

fixed-point in if; equivalently, the existence of a common eigenvector,

corresponding to the common eigenvalue 1, in P for the semigroup

S'= {o-':o-f£S}. We shall prove the following result which, by the

above remarks, includes the Markov-Kakutani Theorem.

Theorem 1. Let E be an ordered, locally convex Hausdorff space

whose positive cone P has a compact base B. Let ~Lbea commutative semi-

group of continuous, order-preserving linear operators on E. Then there

exists a point bo in B such that for every a in 2

o-Q>o) = \<jbo
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for some\^0; i.e., b0 is a common eigenvector for the members ofS.

Note that since B is a base for P, bo in the theorem is necessarily

nonzero [7, p. 25].

The Schauder-Tychonoff fixed-point theorem will be used at an

essential point in the proof.

Day [3] extended the Markov-Kakutani Theorem by replacing

"commutative semigroup" by "amenable semigroup" in the hypothe-

ses. That this is not possible in Theorem 1 is demonstrated by the

following example (from [8, p. 472]): consider the plane E2 with cone

P- {(x, y):x^0, y^O} which has compact base B= {(x, y)EP:

x+y = 1}. Let 2 be the multiplicative group generated by all diagonal

2X2 matrices with positive diagonal entries, together with the matrix

2 is a solvable group, and hence amenable (cf. [2]), but there is no

common eigenvector in B under the action of 2.

Proof of Theorem 1. Since B is a base for P, for every element y

in P there is a unique real number a(y) ^0 such that y =ct(y)f3(y) for

some B(y) in B; if y is nonzero, then 8(y) is unique. We first show that

a:y—>a(y) (yEP) and 6:y—>8(y) (yEP, Y^O) define continuous

functions on the respective domains.

(1) Suppose k is a positive real number, suppose {yx}\ is a net in

[0,fc]P= {8b:bE[0, k], bEB}, and suppose {y\} x converges to some

y in P. By compactness of [0, k] and B, and by the Hausdorff prop-

erty of E, every subnet of {ct(y\) }x has a sub-subnet which converges

to a(y). Hence, {a(y\) ]\ converges to a(y); and so a is continuous on

[0, k]B.
Now let y be any point in P. There is some real number k> 1 such

that y is in [0, k — l]B. By the separation theorem (cf. [5, p. 119])

applied to the disjoint compact convex sets [0, k — l]B and kB, there

is a continuous linear functional/ on E and a real number 7 such that

sup/([0, k - 1]B) < y < inf/(«?).

Then U= {x£P:/(x)<y} is a neighborhood of y in P and is con-

tained in [0, k]B. Since a is continuous on [0, k]B, it is continuous on

U and hence at y.
(2) Suppose {y\}\ is a net in P with yx^O (all X), and suppose

{yxK converges to y^O in P. By (1), {a(yf) }\ converges to a(y). By

compactness of B and the fact that a(y) is positive, every subnet of
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{P(y\) }x has a sub-subnet which converges to (3(y). Hence, {f3(y\) }x

converges to fi(y); and so ft is continuous.

Now let 3C denote the collection of all nonvoid, compact, convex

subsets K ol B satisfying

a(K) C [0, <*>)K,    all a- in S.

If 3Z is ordered by inclusion, compactness and Zorn's Lemma imply

there is some minimal member K0 of 3C.

Choose any a in 2. We argue that there is some real number X„^0

such that the set

KiK) = {ft G Ko'-aik) = Kk}

is nonvoid. If 0E<riK0), choose X„ = 0. If OEaiKo), then (3 o a| K0 is a

continuous map on Ko to K0. By the Schauder-Tychonoff Theorem

(cf. [4, p. 456]), there exists some fto in K such that (3 o o-(ft0) =fto-

Then o"(ft0) =a(<r(ftn))fto, so that we may choose X =a(tr70)).

Clearly A^(X„) is compact and convex. Suppose ft is in K(Ka). Choose

any r in 2. By commutativity

o-(r(k)) = r(<7(ft)) = T(X,ft) = X,(r(ft)).

This implies that r(ft) is in [0, <x>)K(kc). Since ft was arbitrary in

K(K„), r(K(\a))E [0, co)K(K„). Since t was arbitrary in 2, K(K„) is in

3C. By minimality of A7, K(k„) =K0. Since a was arbitrary in 2, one

concludes that for every cr in 2 there is some X„j=0 such that every

element ft in Ko satisfies cr(ft)=X„ft.    Q.E.D.

As an application of Theorem 1, we extend the following result:

Theorem (KreIn-Rutman [6, 3.3]). Suppose E is an ordered,

normed linear space whose positive cone P is closed and has nonvoid

topological interior P'. Let 2 be a commutative semigroup of linear oper-

ators on E such that ^(P') EP' lor each a in 2. Then there exists a non-

trivial, continuous, positive linear functional j'0 on E such that for every

a in 2

/o o o- = X„/0

for some scalar X,>0.

If a linear space E is ordered by a cone P, then P° will denote the

set of all order units in P [7, p. 4]. P° is the "radial kernel" of P in the

terminology of [5, p. 14] (the set of all "internal points" of P in the

terminology of [4, p. 410]). P° equals the topological interior P' of P

whenever £ is a linear topological space and P* is nonvoid (cf. [4, p.
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413]). If P° is nonvoid, every nonzero positive linear functional on E

is strictly positive at every member of P°.

Theorem 2. Suppose E is an ordered linear space such that the posi-

tive cone P has nonvoid radial kernel P°. Let 2 be a commutative semi-

group of order-preserving, linear operators on E. Then there exists a non-

trivial positive linear functional fo on E such that for every a in 2

/o o cr = X„/o

for some X^O.

// cr is in 2 and if a(P°)r\P° is nonvoid, then X<,> 0.

// cr is in 2 and if o-(y0) =Pa(yo) for some y0 in P° and some scalar pa,

then X, =pc. In particular, if for every a in 2 there is some a-fixed-point

in P°, thenfo is a common fixed-point for the adjoints of the members of

2.

As an example of a situation satisfying the hypotheses of Theorem

2, but not those in the Krein-Rutman Theorem, take the nonnegative,

diagonal 2X2 matrices acting on the plane ordered by the cone

{(x, y):x^Q, y^O].

Proof of Theorem 2. Let E' denote the algebraic dual of E, let

E' have the topology of pointwise convergence on E, and let P' denote

the cone of all positive linear functionals on E. P' is nontrivial (cf.

[5, p. 23, (3.2)]). The adjoint cr' of a member cr of 2 is continuous,

linear, and maps P' into P'. Let po be any point in the radial kernel of

P, and let B' = {fEP':f(po) = 1}. Then B' is a base P'. Furthermore,

since for every y in E there exists a real number Sa> 0 such that

— Syp0 = y = Sypo

in E, B' is homeomorphic to a closed subset of the product space

II { [ —Sv, 8»]:yG£}. Thus, B' is a compact base for P'. By Theorem

1, there exists an element/o in B' such that for every cr in 2

foOff   =   (T'(fo)   =   X«r/o

for some X„^0.

Suppose cr is in 2 and y0 is in a(Pa)r\P°. Then fo o cr(y0) > 0 and

/o(yo)>0, so that X„>0.

Suppose cr is in 2 and the ya is some point in P° such that cr(yo)

= n„y0 for some scalar ju„. Then

Kfo(yo) =foOar(y0) = fo(u,yo) = »*fo(yo)-

Since/o(yo)>0, Xff=ju„.    Q.E.D.

Finally, we remark that, following Silverman and Yen's modifica-
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tion of the Krein-Rutman result [8], one can weaken slightly the as-

sumption of commutativity in both Theorem 1 and Theorem 2. If

one replaces commutativity of 2 in Theorem 1 by the following as-

sumption:

(AI) there is a subset 5 of 2 such that

(1) there is some point b in B satisfying s(h) =5 for every s in S,

and

(2) for every pair <ri, <r2, in 2 there are elements Si, s2 in .S such that

o-i<r25i = cr2ov2,

then the set Pi= {bEB:s(b) =b for every s in S} is a compact base

for the cone Pi= [0, °°)Pi which it generates. Using (Al)(2), it can

be shown that cr(Pi)CPi for every a in 2, and that the elements of 2

commute on the linear span of Pi. Hence, the conclusion of Theorem 1

remains valid if the assumption of commutativity of 2 is replaced by as-

sumption (AI). Using this extended result in the proof of Theorem

2, we have that the conclusions of Theorem 2 remain valid if the as-

sumption of commutativity of 2 is replaced by the following assumption:

(A2) there is a subset 5 of 2 such that

(1) there is some nonzero/i in P' satisfying /i o s=fi lor all 5 in S,

and

(2) for every pair <Ti, <r2 in 2 there are elements si, s2 in 5 such that

5lCTiO"2 = S20"20"i.
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