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Abstract. Let A be a symmetric positive definite linear trans-

formation defined on a dense subset of a Hilbert space H, and let Ha

be the Hilbert space completion of the domain of A with respect

to the inner product (u, v)a = (Au, v). It is shown that the inverse of

A is completely continuous on Ha if and only if it is completely

continuous on H.

I. Introduction. In certain problems in mathematical physics, one

often encounters differential operators which are defined on a dense

subset of a Hilbert space and, under appropriate boundary condi-

tions, are symmetric and semibounded. However, differential opera-

tors fail to possess certain desirable properties usually enjoyed by

their inverses. One of these properties is complete continuity, and in

this paper we show the equivalence of the complete continuity of this

inverse in two Hilbert spaces (Theorem 2).

II. Preliminaries. Let A be a symmetric linear transformation

defined on a linear subset M which is dense in a Hilbert space H.

Suppose also that A is positive definite on M; that is, suppose there

exists a constant 7>0 such that

(Au, u) ^ ri|w|!!,       uEM.

Following the method due to K. Friedrichs [l] (cf. also [2], [3]),

we define a new scalar product (u, v)A on M by setting

(«, v)A = (Au, v), u,vEM.

We denote the corresponding norm by

||«|U = (Au,uyi\ uEM.

With this new metric, M becomes an inner product space which can

Received by the editors April 28, 1969.

A MS Subject Classifications. Primary 4615, 4745; Secondary 69XX.

Key Words and Phrases. Linear transformations on Hilbert space, symmetric

linear transformation, positive linear transformation, completely continuous linear

transformation, inverse transformation, eigenvalues of completely continuous trans-

formations, compact linear transformation.

1 Supported in part by the U. S. Atomic Energy Commission under Contract No.

AT(30-l)-3829.

147



148 J. P. FINK [May

be completed in the usual way, thereby obtaining a Hilbert space HA.

In the case we are considering, we have the following theorem:

Theorem 1. The Hilbert space HA can be identified with a subspace

ofH

For a proof of this theorem, see [l ] and also [2], [3].

It is easy to show that

(u, v)A = (Au, v),       uE M,       v E HA,

MU^tMI,       uEHa.

Let / be a fixed element in H and consider the linear functional

Ff(u) = («,/),       uEHA.

Ff is a bounded linear functional on HA, and hence by the Riesz

Representation Theorem there exists a unique element U/EHA such

that

Ff(u) = (u,f) = (u, uf)a,        « G HA.

We thus define an operator G from H into HA by setting

Gf=uf,      fEH.

We then have that

(«,/) = (u,Gf)A,        uEHA,       fEH.

The properties of the operator G are summarized in the following

two propositions, the proofs of which can be extracted from [2]

and [3].

Proposition 1. G is a positive symmetric bounded linear transforma-

tion both on H and on HA.

Proposition 2. If Gf=0 for fEH, thenf = 0. In other words, G has

an inverse.

III. Complete continuity of G. In the applications, it is useful to

know whether or not the operator G is completely continuous (com-

pact) as an operator on HA. This question is not always as simple to

answer as the related question of the complete continuity of G as an

operator on H. The next theorem provides the desired connection.

Theorem 2. G is completely continuous on HA if and only if G is

completely continuous on H.

Proof. For the sake of clarity, we use the notation £ to denote
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summation in the H metric of an infinite series and introduce the

notation ^f,A to denote summation in the HA metric.

Suppose first that G is completely continuous on H. Since G is also

symmetric on H, its nonzero eigenvalues p,i, arranged according to

decreasing absolute values, are of finite multiplicity and either finite

or countably infinite in number (cf. [2]). In the latter case, Ui—>0.

Furthermore, every element of the form Gf, fEH, can be developed

in terms of the orthonormal system {$,} of corresponding eigen-

vectors:

Gf = E (Gf, <t>i)4>i = E wtf. 4>i)<f>i-

Since G is a positive operator on H, p.,> 0. By Proposition 2, 0 is not

an eigenvalue of G and consequently the eigenvectors <pi correspond-

ing to the nonzero eigenvalues Ui form a complete orthonormal se-

quence in H (cf. [2]). Since

G<pi = ut(j>i,       ui > 0,

we have that

4>i — tn G<j>i E HA.

Setting Ui=p.}/2<pi, we observe that the w,- form an orthonormal set

in HA.

Let uEHA and set

V =   E (u> Ui)AU{.
A

Since G is a continuous linear transformation on Ha, we have that

Gv = E (u> Ui)AGui
A

= ^Zai(u,Ui)AUi
A

= ^2ui(u,Ui)AUi.

The last step follows because convergence in the Ha metric implies

convergence in the H metric.

Now G is completely continuous and symmetric on H so that

Gu = E /■*»•(«> <t>i)<bi

=  E (u> ui)Ui

= X) («, Gui)AUi

= ^ui(u,Ui)AUi.
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Consequently, Gu = Gv and u=v. Therefore, the w,- form a complete

orthonormal set in HA and

Gu = X fii(.u> u/)AUi,       u E HA.
A

It follows that G is completely continuous on HA (cf. [2]).

Conversely, suppose that G is completely continuous on HA. Since

G is symmetric on HA, its nonzero eigenvalues pi, arranged according

to decreasing absolute values, are of finite multiplicity and either

finite or countably infinite in number. In the latter case, Pi—>0.

Since G is a positive operator on HA, ju,>0. By Proposition 2, 0 is

not an eigenvalue of G and consequently the eigenvectors Ut corre-

sponding to the nonzero eigenvalues pt form a complete orthonormal

sequence in HA. Setting <pi=p/1,2Ui, we see that the <j>i form an ortho-

normal set in H.

Let fEH. Then GfEHA and

Gf = zZ (Gf, Ui)AUi.
A.

Since convergence in HA implies convergence in H, we obtain

Gf = J2 (Gf, u/)AUi

=   IZ if, «•)«<
= Z /"•(/> **)*«       fEH.

Hence, G is completely continuous on H.
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