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Abstract. Let M"(i) be the class of nX« (0, l)-matrices with

i ones. We wish to find the first and second moments of Perm B,

the permanent of the matrix B, as B ranges over the class M"(i).

We succeed for i>n3ll+l in finding an asymptotic estimate of these

quantities. It turns out that the square of the first moment is

asymptotic to the second moment, so we may conclude that al-

most all matrices in Mn{i) have asymptotically the same per-

manent. It is suggested that the technique employed will also

enable us to evaluate asymptotically the number of hamiltonian

circuits in a random graph with i links on n vertices.

Combinatorial functions exist whose complexity makes them a

suitable subject for "probabilistic" theorems. It is conjectured that

the permanent of an nXn matrix A,

Ferm(A) =  £ (flA(i,T(i)))

requires a number of N of operations for its computation which is

exponential in n. Compare the fact that there exists an algorithm

requiring n3 operations to compute det(^4).

Some probabilistic results concerning graphs and (0, l)-matrices

have been proven by P. Erdos and A. Renyi. An example: almost all

graphs with cn log n edges on n vertices are connected. It is a con-

jecture that almost all nXn (0, l)-matrices with at least n1+l ones,

«>0, have a nonzero permanent.

In this paper, working in a different range, where the number of

ones is a nontrivial proportion of the n2 spaces of a matrix, a strong

probabilistic result is obtained. The "average" permanent is derived

and it is shown that almost all matrices have permanents asymptotic

to this average. We begin with some definitions.

Let Mn(i) be the class of reXra (0, l)-matrices with i ones. We wish

to find asymptotic estimates of the quantities

Average (Perm B)
BeM"M

and
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Average (Perm B)2-
BeM"(i)

Choose BEMnii) at random; also choose an element ir from the

permutation group on n elements.

Definition. Let xl he a random variable dependent on B and w,

given by

xr = 1    iff Bij,k) = 1    whenirij) = k,   for all/ = l(l)rc,

= 0    otherwise,

i.e., X, is 1 iff the permutation ir gives a contribution of 1 to Perm(5).

Now define

(1.1) XB = Perm B =   £  **•

Obviously XB is a random variable dependent only on B which takes

on the value Perm B.

Given ir, we may calculate P(x„ = 1) by enumerating the number

of matrices B for which xx = 1 and dividing by the total number of

matrices BEMnii).

A matrix B such that xT = 1 has l's in all positions (J, k) where

7r(j) =k. The remaining l's may be placed anywhere and this may be

done in

/n% — n\

\i — n /

ways.

The total number of matrices BEM"ii), #Afn(z), is given by ("')•

Therefore, for any irESn,

, b        .      /n2 — n\    I (n\

(1.2)

- II (** — i) / tf <»* —i)-
y=o /     >-o

Lemma 1. Asymptotically in i, with m^i, m = o(i),

(1.3) II (* - j) = if* expi-mim - l)/2i) (l + o(^\\

Proof. We have
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iog(2(*-./))-z>g(t-/)
(1.4) Vy"° '      y"°v        ' m-l

= m log t + X) '°g(l —/A)-
>-o

We may expand log(l —j/i), in a Taylor series with remainder, as

log(l -j/i) = -j/i - R2(j/i),

where R*(j/i) is strictly positive and may be bounded by

R^d/i) ^ (j/iy/2(i - j/i)\

Note that max0sysm_i |P2(j'A)| ^(m/i)2/2(l-m/i)2.

Therefore    the    total    absolute    error    incurred    in    the    sum

2^,7=0 log(n—j/i) by substituting —j/i ior log(l —j/i) is bounded by

i2 \2(i-m/j)2) Vi2/

and is strictly negative. Equation (1.4) gives

/ m—1 \ nt—1 /mS\

(1.5) log (^ n (*' - i) j = «log * - Z iA - o^-J.

Since    yiTTn1 i li = m(m — l)/2i,   exponentiating   equation    (1.5)

proves the lemma.

Theorem I. Asymptotically in n, with i>nil2+',

Average Perm B = n\(i/n2)n exp( — \(n2/i — !))(! + o(n~2')).

Proof. We evaluate P(x^ = 1) as given in equation (1.2). Applying

Lemma 1.1, we see

n-l

II (»' —j) = in exp( — n2/2i)(l + o(n~2'))
i-o

and
n-l

JJ (n2 - j) = W*v-W2(l + o(»-»)).
y-o

Therefore

P(xf = 1) = (i/n2)" exp(-K«2A ~ !))(! + o(«-2'))-

By equation (1.1), since P(x„ = 1) =E(x„), we have
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B B / i \"
Average Perm B = £(* ) =   £ £(**) = w! (— )
B&M'{i) xes„ \»7

•exp(-i(f»V* ~ 1))(1 + oin-2'))

which completes the proof.

We now turn to the evaluation of the second moment. The squared

permanent of a randomly chosen matrix BEMn(i) is given by:

(1.6) (Perm B)   =   ^ x,   X ^ =   Z     Yl, **•*»•
t£S, <res„ i£Sn     a£Sn

Consider the ordered pairs iir, o-)ESnXSn- We may partition

SnXS» as follows:

(1.7) S„ XS„ = .B0 + P1 + P2+ • • • + Bn,

where   iir,   cr)EBk   iff   Tr(j)=cr(j)   for   exactly   k   integers  j   in

{1,2, •••,«}.
We may estimate the number of elements (w, a) in block P*. The

permutation w may be chosen in any of n\ ways. Now for each fixed

7T, the expanded probleme des recontres gives us an exact expression

for the number of permutations a, fa, such that (ir, <r)EBk.

1       / 11 (-l)"-*\
#<r = —«!(l - 1 +-+ ••• +■-J.

ft!      V 2!      3! (n-k)\)

We conclude

1 / 11 (-l)n-*\
(1.8,     »__0,0.(l-l + ---+...+^-5i).

Therefore, asymptotically in n — k, (1.8) gives

(1.9, I& = 1 („,).«-.(,+0(_i_)).

Note especially that for all ft,

#BkZ -(„!)*.
ft!

By the same method used to calculate P(x^ = l), we find, for

iir,o-)EBk

in-k-l •  in-k—1

(1.10)    p(^^ = d= n (i-y)/ n (»■—i>.
y-o '        y=o
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Theorem II. Let i>nV2+t. Then asymptotically with n,

Average (Perm B)2 = (nl)2(i/n2)2n
BeW{i)

■exp(-(n2/i - 1))(1 + 0(w-1'4-') + 0(n~2')).

Proof. By (1.6) and (1.7), we have the random variable (Perm B)2,

where B is chosen at random from Mn(i), given by

(Perm£)S= E (   E    *?•**)■

Since P(xf-xf = 1) =£(xfxf), and since this quantity is indepen-

dent of the exact (ir, a)EBk, we have

Average (Perm B)2 = E((Perm B)2)
BeJlf"(0

(1.11)

- E {#Bk)-P(x1-x* = 11 (t, cr) G Bk).
Jfc=0

Applying Lemma 1 to equation (1.10), we see

^Zir1 /     (2n- k)(2n- k- 1)\ / /w3\\

^Ztr1 (     (2n-k)(2n-k-l)\( / 1 \\

and thus setting 2w — fe —1~2» — k in the above, we get

(112)    i^'x' = 1l(7r'CT)£5*)

= (vV)2"-*exp(-2(l - k/(2n))2(n2/i - 1))(1 + 0(n~2')).

Let us now break up the sum in (1.11) to

(1.13) [ E + Z \#Bk)-P(x*-x1 = 11 (t, a) E Bk)
L k=0 *!+l J

with ki= [w6/8]. For k^ [»6'8], (1.12) may be simplified to

P(xl-xB„ = l\ (tt, cr)) EBk

(1.14) = (j/w2)2"-* exp(-2(l - k/n)2(n2/i - 1))

■(1 + O^-1^-') + 0(n~2')).

Using equation (1.9) to estimate §Bk, the first sum of (1.13) is

given by
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£j ftl \ \in-k)\))\n2)

•exp(-2(l - k/n)2in2/i - 1))(1 + OO*-1'*-) + Oin~2*))

= (w!)2exp(l -2n2/i)(—\

■[kd'«7-m]
• (1 + 0(w-l'4-«) + Oin~2'))

CLK9 =(.0'e,p(.-2»V,)(iy

{Sii(Texp(4(T-7))),+ 0("-<l,'""'">]

•(i + o(»-1'4-') + o(«-20)

/        2n2\/i\2n
_M-p(t-T)(5)

■h(fexp(4(7-7)))]
•(i + o^-^-^ + o^-2'))

-*•»■ (?)*-»(-(t-«))

■(l + 0(»-l'*-«) +0(w-2«)).

Using the fact that §Bk^inV)2/k\, we may bound the second sum

of (1.13) by

»    i       /iy-* /iVn ./a
£   77 ̂ H)       =(n!),(-i)  0(W-^'8>" ')

*1+i   ft! \n2/ \n2/

which is exponentially smaller in n than the contribution of the first

sum. This concludes the proof of Theorem II, since the expression

1.16 is the quantity desired.

Corollary. Let n= 1, 2, • • • and iin) be an integer valued function

of n such that iin)>n3l2+t. Then almost all matrices in Mniiin)),

«G{l,2, • • • },have permanent asymptotic to AverageBtM^wn)) Perm B.
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Proof. Immediate from Theorems I and II which give the first

and second moments of Perm B, BEM"(i).

Remark. A similar technique to the one used above will give the

first and second moments of the number of hamiltonian circuits in

a random graph with i links and n edges, i<n3l2~e.

Remark. If Mn is the class of all nXn (0, l)-matrices, then a simple

argument of the type used above shows

Average Perm B = n\2~n(l + 0(«-1))
bzm"

and

Average (Perm B)2 = (n^22~2ne(l + 0(n~1)).
BeMn

This result is somewhat surprising since the second moment is not

asymptotic to the square of the first moment. It may be checked,

however, by the equations

n2

Average Perm B = E Average Perm B-#M"(i)/2n'1
BeM" i-n   B£Mnli)

and

n2

Average Perm M = E Average (VermB)2-jtM'l(i)/2n2.

These sums may be evaluated by the method of steepest descent,

and the results check with those above.

Remark. Further terms of the asymptotic series, with error

bounds, may be found for AverageBejif»«) Perm B by proving Lemma

1 again with longer Taylor expansions of the quantity log(l— j/i).

Evaluation of further terms in the quantity AverageBsAf"(.) (Perm B)2

is a much harder problem however. It might be possible to go to

further terms by evaluating the sum suggested by (1.11) by the

method of steepest descent.
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