
NOTE ON THE SHAPIRO POLYNOMIALS

JOHN BRILLHART AND L. CARLITZ

1. Introduction. The polynomials Pnix) and Qnix), which we are

concerned with here, were introduced in 1951 by H. S. Shapiro [S, p.

39] in his study of the magnitude of certain trigonometric sums. They

are defined recursively by the formulas

(1)      PB+1(x)  = Pnix) + X^Qnix), Qn+iix)  =  Pn(x) ~ **"&(*),

where re^O and Poix) =Qoix) = 1. (See [4] also. Note in this reference

that Poix)=Qoix)=x.)

These polynomials have been used by Kahane and Salem in their

book [l] to prove several theorems about trigonometric series. Rider

[2 ] used a generalization of these polynomials to complete the solu-

tion of a problem partially solved in [4]. In a more recent paper Rider

[3] employed the polynomials to exhibit certain subalgebras of the

group algebra of the unit circle. In particular, in this paper Rider

obtained a special case of Theorem 4 below.

The first few polynomials are

Piix) = 1 + x,       Piix) = 1 + x + x2 - x\

Piix) = 1 + X + x2 - X* + X* + xi - x6 + x\

Qiix) = 1 - x,        Qiix) = 1 + x - x2 + x\

Qiix)  = 1 + X + xl — X5 — X4 — X6 + Xs — X7.

It is clear from this definition that deg P„ = deg Qn = 2n — 1.

In this note we will derive a relation between Pnix) and Qnix) and

use it to show that these polynomials have equal discriminants. We

will also find a formula for the resultant of the two polynomials, and

develop an explicit formula for their coefficients. The latter will then

be used to compute the value of P„(x) at x= +1, +i, and certain

other points on the unit circle.

2. We begin by deriving the relation that exists between P„(x)

and Qnix).

Theorem 1. (L.(x) = (-l)"x2"-1P„(-l/x), w^O.

Proof. By induction. The theorem holds for re = 0, 1. Assume the

relation for re, w^ 1. Then
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(-l)n+lx^l-iPn+l(-l/x)

=   (-1)-+V"+-1[P„(-1A)  + (-1/X)2"QK(-1/X)]

= (-l)»+lx2n+1-l[(-l)»Qn(x)/x2"-1 + x-2n(-lH-l/x)2"-1Pn(x)]

=  Pn(x)  ~ X2"Q„(X)   = Qn+l(x).    ■

The following properties of the discriminant P of a polynomial will

be of use in establishing the corollary below. Let c^O bea constant

and f(x) by a polynomial of degree n. Then

(i) D(f(cx)) =cn(-n-»D(f(x)).

(ii) D(cf(x))=c2«-2D(f(x)).

(m)D(xf(l/x))=D(f(x)).

Corollary. D(Pn(x))=D(Qn(x)), ra^O.

Proof.

D(Qn(x)) = P((-l)^2n-1P„(-lA))

= D((-l)-+lx2"-lPa(l/x)),

using (i) with c= — 1. The corollary then follows from (ii) and (iii). |

The first few completely factored values of D(Pn(x)) are listed in

the table below

n D(Pn(x))

1 1

2 -2M1

3 210-5M93

4 2M-32834009652827

We next recall several properties of the resultant R of two poly-

nomials / and g of degree n and m respectively.

(i) R(f, cg)=c"R(f, g), c a constant.

(ii) R(f, g)=adR(f, g+X/), where a is the leading coefficient of/,

X is an arbitrary polynomial, and ci = deg g— deg (g+X/).

(iii)R(f,g) = (-l)™R(g,f).
(W)R(f,gh)=R(f,g)R(f,h).

Theorem 2. R(Pn(x), (?„(*)) = (-l)"-122"+l-—2, »=1.

Proof. For w=l we have P(Pi, Qi) =2. Suppose »>1. Then
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RiPn, Qn)   = RiPn-1 + X^Qn-l, Pn-1 - X^Qn-l)

= RiPn-l + X^Qn-l,  2Pn-l)

=   -  24"-1ic(PB_1, P„_i + X^-l)

=  - 22"-1i?(P„_i, X^-l)

=   -   22"-'i?(P„_i, X2-')^(Pn-l, Qn-l).

But RiPn-u x2"~l) = 1. Hence RiPn, Qn) = -22""1 i?(P„_i, Qn-i). From

this reduction step, used repeatedly, we obtain the evaluation

R(Pn, Qn)={lJl-A-22,-1)}RiPu C2i) = (-l)'t-122"+1—2. ■
The next theorem permits the generation of P„(x) and Qnix) with-

out combining the two types of polynomials.

Theorem 3.

P„+i(x) = Pnix2) + xPni-x2),       n = 0.

Qn+lix)   =  Qnix2)   + xQni-X2), »  =   1.

Proof. By induction. The formulas are true for » = 0, 1. Assume

both formulas hold for re, «<& 1. Then

P„+l(x)   = Pnix)  + X2"Qnix)

=   [Pn-lix2) + xPn-li-X2)} + X2"[(?„-l(x2) + xQn-li-X2)]

=   [Pn-lix2)   + X2Qn-lix2)}  + x[Pn-li-X2)   + X2"Qn-li~ X2)}.

Hence,

(2) P„+i(x) = Pnix2) + xPni-x2).

The formula for Qn+\ix) is established in a similar manner. |

3. We now turn to an investigation of the coefficients of Pn(x).

(The corresponding results can be obtained for Qnix) through the use

of Theorem 1.)

It is clear from (1) that Pnix) has coefficients ±1, without gaps,

and that the first 2" coefficients of P*+i(x) are identical with those of

P„ix). It follows then that these coefficients do not depend on re, so

we can write P„(x) = XXo1 «(r)xr, re^O. (We may, of course, also

consider P„(x) as the first 2" terms of the infinite series P„(x)

= XX„ air)x'.)
We will now derive an explicit formula for air).

Theorem 4. If we write r = r0+ri-2+r2-22+ • • • +rk-2k, k^O,

rt = 0 or 1, then
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(3) a(r)  =  (-l)n»rt+rifi+...+r»-ir*i

Proof. We observe in (2) that the even and odd degree terms on

the right side are separated, which allows us to equate coefficients,

obtaining the relations a(2r)=a(r) and o(2r+l) = ( —l)ra(r). If we

write a(r) = (—l)e(r), then

(4) e(2r) = e(r)    and    e(2r + 1) = r + e(r)  (mod 2).

Proceeding by induction on k, we verify for k = 0 that l=a(r0)

= ( —1)°, where r0 = 0 or 1. Assume next that e(r) =rxr2 + r2r3+ • • • +

rk-Xrk for any r = rx+r2-2+ • • • +rk-2k~1 of k digits. Consider the

number 2r + r0, where r0 = 0 or 1. Then using (4) e(2r+rf) =r0r+e(r)

= r0rx+e(r) =r0rx+rxr2+ • • ■ +rk-Xrk (mod 2).H (Note the particular

case o(2') = 1.)

4. We next consider the problem of evaluating P„(x) at certain

points on the unit circle. We begin with

Theorem 5.

P2n(l) = 2",        P2n+i(l) = 2n+l,       n^O.

P2n(-1) = 2",        P2n+i(-l) =0,        n ^ 0.

Proof. Let 0(n) be the number of a(r) in Pn(x) that are positive.

In particular, let 6o(n) be the number of cz(2r) and 9x(n) be the number

of a(2r + l) in P„(x) that are positive. Then certainly

(5) 6(n) = 0o(n) + 6x(n).

Since the first term on the right side of (2) contains all the terms of

even degree, we have

(6) 6Q(n + 1) = 6(n),

and hence by (5)

(7) 6a(n + 1) = 60(n) + 6x(n).

Also, since the second term on the right side of (2) can be written as

Erlo1 (-l)ra(r)x2'+\ we find that

6x(n + 1) = 60(n) + [2--1 - ex(n)].

Adding this equation to (7), and using (5), we obtain

6(n + 1) = 60(n + 1) + 6x(n + 1) = 260(n) + 2n~\

Finally, from (6) we derive the recursion relation
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din + 1) = 20(re - 1) + 2"-1.

With  the initial conditions 0(0) = 1, and dii) =2,  the solution is

readily found to be

(8)       0(2re) = 22"-1 + 2"-1,       0(2re + 1) = 22" + 2",    re ^ 0.

From the equation Pn(l) = 8(n) — [2n-0(re)] = 20(re)-2", we con-

clude that P2n(l)=2n and P2„+i(l) =2n+1. If we now set x = l in (2),

we have P„(-l) =P„+1(1)-P„(1), whence P2n(-1)=2" and

P2B+i(-l)=0. ■

With a knowledge of PB(±1), we are in a position to find the

values at x = eT''2. For example, setting x = i in (2), we obtain

Pn+iii) =Pni-l)+iPnil),whence Pmii) =72»andP2B+1(t) = (1+72".
The values at x = — i are found by conjugating.

Remark. It can readily be shown by repeated use of (2) that the

series Poo(x) diverges at the dense set of points exp (2irri/2') on the

unit circle.

The authors would like to thank Michael Garvey for his suggestions

on parts of the paper.
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