ON *l-l* **SUMMABILITY**

B. WOOD

1. Introduction. Let (E, p_i) and (F, q_j) be Fréchet spaces, i.e., locally convex Hausdorff spaces which are metrisable and complete, whose topologies are generated, respectively, by the countable collections $\{p_i\}$ and $\{q_j\}$ of seminorms. Let the infinite matrix $A \equiv (A_{nk})$ consist of entries A_{nk} each of which is a continuous linear operator of E into F. Given a sequence $\{x_k\}$ in E we (formally) define a sequence $\{y_n\}$ by

(1.1)
$$y_n = \sum_{k=0}^{\infty} A_{nk} x_k, \quad n = 0, 1, 2, \cdots.$$

We say the matrix A is an *l*-*l* method if each series (1.1) converges in (F, q_j) and

$$\sum_{n=0}^{\infty} q_j(y_n) < + \infty, \qquad j = 1, 2, \cdots,$$

whenever

$$\sum_{k=0}^{\infty} p_i(x_k) < +\infty, \qquad i = 1, 2, \cdots.$$

We say the method A is absolutely L-regular if in addition $\sum_{n=0}^{\infty} y_n = \sum_{k=0}^{\infty} L(x_k)$ whenever $\sum_{k=0}^{\infty} p_i(x_k) < +\infty$, $i=1, 2, \cdots$. Here L is a prescribed continuous linear operator of E into F. It is the purpose of this note to establish necessary and sufficient conditions which ensure that A be *l*-*l* or absolutely L-regular. For the classical case (E, F the complex numbers with the usual topology) these conditions were given by Mears [3] and Knopp and Lorentz [1] and for the Banach space setting by Lorentz and Macphail [2].

2. Theorems.

THEOREM 2.1. The matrix $A = (A_{nk})$ defining series to series transformations from the F-space (E, p_i) into the F-space (F, q_j) is l-l if and only if

(2.1) for each bounded set M_{α} in E and for each fixed j,

$$\sum_{n=0}^{m} q_j(A_{nv}(x_v)) \leq K_{\alpha,j} \quad for \ m, \ v = 0, \ 1, \ 2, \ \cdots$$

Received by the editors June 20, 1969.

and $x_v \in M_{\alpha}, v = 0, 1, 2, \cdots$.

The proof of Theorem 2.1 requires the following lemmas. Lemma 2.2 is known [4], while Lemma 2.3 is a minor modification of Lemma 2.4 of [5].

LEMMA 2.2. If E and F are locally convex spaces and E is quasicomplete then any collection of continuous linear operators from E into F which is simply bounded is bounded for the topology of uniform convergence on bounded sets.

LEMMA 2.3. If $\sum_{k=0}^{\infty} A_{nk}x_k$ converges in F for every sequence $\{x_k\}$ in E such that $\sum_{k=0}^{\infty} p_i(x_k)$ converges $(i=1, 2, \cdots)$, then the sequence $\{A_{nk}\}, k=0, 1, \cdots$, of continuous linear operators from E into F is bounded (for fixed n) for the topology of uniform convergence on bounded sets.

PROOF OF THEOREM 2.1. Assume $A = (A_{nk})$ is *l*-*l* and consider the linear space E_1 of sequences $\{x_k\}$ in *E* such that $\sum_{k=0}^{\infty} p_i(x_k) < +\infty$ $(i=1, 2, \cdots)$. For $x = \{x_k\}$ in E_1 define $P_i(x) = \sum_{k=0}^{\infty} p_i(x_k)$. Then, for each *i*, P_i is a seminorm on E_1 and the locally convex space (E_1P_i) is complete. Now, since $A = (A_{nk})$ is *l*-*l*, each series $\sum_{k=0}^{\infty} A_{nk}(x_k)$ converges in (F, q_i) whenever $\sum_{k=0}^{\infty} p_i(x_k) < +\infty$, $\{x_k\}$ in *E*. It follows from Lemma 2.3 that $\{A_{nk}\}, k=0, 1, \cdots$, is bounded for the topology of uniform convergence on bounded sets. We shall show that this implies

(2.2) for each $n=0, 1, 2, \cdots, i=1, 2, \cdots$ and $j=1, 2, \cdots$, there exists a number $K_{n,j,i} \ge 0$ such that $q_j(A_{nk}(x)) \le K_{n,j,i}p_i(x)$, $x \in E, k=0, 1, 2, \cdots$.

For each $k = 0, 1, \cdots$ and fixed i, j, n, define $\mu_k(x) = q_j(A_{nk}(x))$, $x \in E$. Then μ_k is a seminorm on E. It follows from the fact that $\{A_{nk}\}$ $(k = 0, 1, \cdots)$ is bounded for the topology of uniform convergence on bounded sets that there exists a number, $K_{n,j,i} \ge 0$, such that $p_i(x) < 1$ and $k = 0, 1, \cdots$ imply $\mu_k(x) \le K_{n,j,i}$. If $K_{n,j,i} > 0$ it is easy to see that (2.2) holds. On the other hand, if $K_{n,j,i} = 0$ (2.2) follows from elementary properties of seminorms (see, e.g., the proof of Theorem 2.1 in [5]). Thus for each fixed $n = 0, 1, \cdots$ the linear operator T_n defined by $T_n(x) = \sum_{k=0}^{\infty} A_{nk}(x_k), x = \{x_k\} \in E_1$, is in $L(E_1, F)$, i.e., T_n is a continuous linear operator from E_1 into F. Let F_1 denote the linear space of sequences $\{y_k\}$ in F such that $\sum_{k=0}^{\infty} q_j(x_k) < +\infty$. For $y = \{y_k\} \in F_1$ define $Q_j(y) = \sum_{k=0}^{\infty} q_j(y_k)$. Then (F_1, Q_j) is a locally convex complete seminormed space. Define the operators $U_m, m = 0$. $1, \cdots,$ by $U_m(x) = \{y_n\}$ where

$$y_n = T_n(x),$$
 $n = 0, 1, \dots, m,$
= 0, $n > m,$

and $x \in E_1$. Thus $U_m \in L(E_1, F_1)$, $m = 0, 1, \cdots$. Since A is *l-l*, $\{U_m(x)\}$ converges in (F_i, Q_j) whenever $x \in E_1$. It now follows from Lemma 2.2 that U_m , $m = 0, 1, \cdots$, is bounded for bounded convergence on $L(E_1, F_1)$. Therefore, for each fixed j and each bounded set M in E_1

$$\sup_{x \in M} Q_j(U_m(x)) \leq K_{M,j}, \qquad m = 0, 1, \cdots.$$

Consider a bounded set M_{α} in *E*. Say M_{α} consists of points *x* such that $p_i(x) < \alpha_i$. Consider sequences of the form $\{x_0, 0, 0, \cdots\}$, $\{0, x_1, 0, \cdots\}$, $\{0, 0, x_20, \cdots\}$..., where the x_i 's are in M_{α} . All such sequences are in the same bounded set U_{α} of (E_1, P_i) . Therefore,

$$Q_{j}(U_{m}(x)) = Q_{j}(\{T_{0}(x), T_{1}(x), \cdots, T_{m}(x), 0, 0, 0, \cdots, \})$$
$$= \sum_{n=0}^{m} q_{j}(T_{n}(x)) = \sum_{n=0}^{m} q_{j}(A_{nv}(x_{v}))$$
$$\leq K_{m_{\alpha},j} = K_{\alpha,j},$$

for $m, v = 0, 1, 2, \cdots$ and $x_v \in M_\alpha$ for each v, i.e., (2.1) holds.

Conversely, suppose (2.1) is true. Let $x = x_k \in E_1$. Then $x_k \in (\text{same})$ bounded set M_{α} in E for $k = 0, 1, \cdots$. For each j and each $n = 0, 1, \cdots$, we claim that

(2.3)
$$\sum_{k=0}^{\infty} q_j(A_{nk}(x_k)) < + \infty.$$

For, by (2.1), given j there exists $K_{\alpha,j} \ge 0$ such that $q_j(A_{nk}(x_k)) \le K_{\alpha,j}$, $n, k = 0, 1, \cdots$. It now follows, as in the first part of the proof, that there exists a number R = R(n, j, i) such that $q_j(A_{nk}(x_k)) \le Rp_i(x_k)$ for $k = 0, 1, \cdots$. Thus (2.3) is valid.

Since

$$y_m = \sum_{n=0}^m q_j \left(\sum_{k=0}^\infty A_{nk}(x_k) \right)$$

is a nondecreasing sequence of nonnegative numbers, it suffices to show that $\{y_m\}$ is bounded above in order to conclude that A is *l-l*. For a given $j, x \in E$ and $v = 0, 1, \cdots$, define

$$S_j(x) = \sum_{n=0}^{\infty} q_j(A_{nv}(x)).$$

It follows, using (2.1), that S_j is a seminorm on E. Property (2.1) now implies, as before, the existence of a number $T \ge 0$, where T depends on j, i but is independent of n and v $(n, v=0, 1, \cdots)$, such that $S_j(x) \le Tp_i(x)$ for $x \in E$. Using (2.3) we obtain easily that $\{y_m\}$ is bounded above and the proof is complete.

Under (2.1) we have

$$\lim_{m} \sum_{n=0}^{m} \sum_{k=0}^{\infty} A_{nk}(x_{k}) = \lim_{m} \sum_{k=0}^{\infty} \sum_{n=0}^{m} A_{nk}(x_{k}) = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} A_{nk}(x_{k}).$$

The following theorem is now obvious.

THEOREM 2.4. The method $A = (A_{nk})$, considered as an l-l method, is absolutely L-regular if and only if (2.1) holds and also

$$\lim_{m} \sum_{n=0}^{m} A_{nk}(x_{k}) = L(x_{k}), \qquad k = 0, 1, \cdots,$$

for $\{x_k\} \in E_1$.

References

1. K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Arch. Math. 2 (1949), 10-16. MR 11, 346.

2. G. G. Lorentz and M. S. Macphail, Unbounded operators and a theorem of A. Robinson, Trans. Roy. Soc. Canada Sect. III (3) 46 (1952), 33-37. MR 14, 634.

3. F. M. Mears, Absolute regularity and the Norlund mean, Ann. of Math. (2) 38 (1937), 594-601.

4. M. S. Ramanujan, Generalized Kojima-Toeplitz matrices in certain linear topological spaces, Math. Ann. 159 (1965), 365–373. MR 35 #7038.

5. B. Wood, Series to sequence and series to series transformations in Fréchet spaces, Math. Ann. (to appear).

UNIVERSITY OF ARIZONA, TUCSON, ARIZONA 85721