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1. Introduction. Let (P, pi) and (P, qf) be Frechet spaces, i.e.,

locally convex Hausdorff spaces which are metrisable and complete,

whose topologies are generated, respectively, by the countable collec-

tions {pi} and {gyj of seminorms. Let the infinite matrix A = (Ank)

consist of entries Ank each of which is a continuous linear operator of

E into P. Given a sequence {xk} in E we (formally) define a sequence

{jn} by

(1-1) Jn = 22 Ankxk,        n = 0,1,2, ■■■ .
k=0

We say the matrix A is an l-l method if each series (1.1) converges

in (P, gy) and

00

22<ii(yn) < + °°,     j = 1,2, ■ ■ ■,

whenever

CO

22pi(xf) < + =0,        i = 1,2, ■ ■ ■ .
jfc=0

We say the method A is absolutely P-regular if in addition 22n~o Vn

= 12t~o L(xf) whenever 22t-o Pi(xf) < + *>,i=l,2, ■ ■ • . Here L is
a prescribed continuous linear operator of E into P. It is the purpose

of this note to establish necessary and sufficient conditions which en-

sure that A be l-l or absolutely P-regular. For the classical case

(E, F the complex numbers with the usual topology) these conditions

were given by Mears [3] and Knopp and Lorentz [l] and for the

Banach space setting by Lorentz and Macphail [2].

2. Theorems.

Theorem 2.1. The matrix A = (Ank) defining series to series transfor-

mations from the F-space (E, pf) into the F-space (F, qf) is l-l if and

only if
(2.1) for each bounded set M„ in E and for each fixed j,

m

22 qj(Anv(xf)) g KaJ       for m, v = 0, 1, 2, • • •
7! —0
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and xvEMa, v = 0, 1, 2, • • • .

The proof of Theorem 2.1 requires the following lemmas. Lemma

2.2 is known [4], while Lemma 2.3 is a minor modification of Lemma

2.4of [5].

Lemma 2.2. If E and F are locally convex spaces and E is quasicom-

plete then any collection of continuous linear operators from E into F

which is simply bounded is bounded for the topology of uniform con-

vergence on bounded sets.

Lemma 2.3. If zZt-o AnkXk converges in Ffor every sequence {xk} in

E such that zZt-oP>(xk) converges 7 = 1, 2, • • • ), then the sequence

{A„k}, k = 0, 1, • • • , of continuous linear operators from E into F is

bounded (for fixed n) for the topology of uniform convergence on bounded

sets.

Proof of Theorem 2.1. Assume A = (A„k) is 14 and consider the

linear space £i of sequences {xk} in E such that zZt-o Pt(Xk) < + °°

(i = 1, 2, ••■ ). For x= {xk} in £x define Piix) = zZt-o ptixk). Then,

for each i, Pi is a seminorm on £i and the locally convex space

(£i£,) is complete. Now, since A = iAnk) is l-l, each series

zZk-o Ank(xk) converges in (£, qf) whenever zZt-o pi(xk) < + °° , {xk}

in £. It follows from Lemma 2.3 that {^4,^}, ft = 0, 1, • • ■, is bounded

for the topology of uniform convergence on bounded sets. We shall

show that this implies

(2.2) for each « = 0, 1, 2, • • • , i = l, 2, ■ ■ ■ and 7 = 1, 2, • ■ ■ ,

there exists a number A„,/,<^0 such that qj(Ank(x))SKn,j,ipi(x),

xEE, k = 0, 1, 2, ••• .
For each k = 0, 1, ■ ■ ■ and fixed i, j, n, define pk(x) =qj(Ank(x)),

xEE. Then pk is a seminorm on E. It follows from the fact that {Ank}

(ft = 0,1, • • • ) is bounded for the topology of uniform convergence on

bounded sets that there exists a number, A„,y,,- = 0, such that pi(x) < 1

and ft = 0, 1, ■ • • imply pk(x) SKnj,i- If A„,/,,>0 it is easy to see

that (2.2) holds. On the other hand, if A„,y,, = 0 (2.2) follows from

elementary properties of seminorms (see, e.g., the proof of Theorem

2.1 in [5]). Thus for each fixed w = 0, 1, • • • the linear operator Tn

defined by Tn(x) = zZt=o Ank(xk), x= {xk} EEU is in A(£i, £), i.e., Tn

is a continuous linear operator from £i into £. Let £i denote the

linear space of sequences {yk} in £ such that ^°=o 2i(*t) < + w. For

y= {yk} E Fi define Qj(y)= JZt-o aAjk)- Then (Fi,Q,) is a locally con-
vex complete seminormed space. Define the operators Um, m = 0,

1, ■ ■ ■ , by Umix)= {yn} where
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y„ = T„(x),        n = 0,1, ■ • ■ ,m,

= 0, n > m,

and x£Pi. Thus UmEL(Ex,Fx), m = 0, 1, • • • . Since A is /-/,

{ Um(x)} converges in (F{, Qj) whenever xEEx. It now follows from

Lemma 2.2 that Um, m = 0, 1, • • • , is bounded for bounded con-

vergence on L(Ex, Pi). Therefore, for each fixed j and each bounded

set M in Pi

sup Qj(Um(x)) g Kmj,       m = 0, 1, • • • .
xGM

Consider a bounded set M„ in P. Say Ma consists of points x such

that pi(x)<ai. Consider sequences of the form {x0, 0, 0, • • • },

{0, xx, 0, • • ■ }, {0, 0, x20, ■ ■ ■ } ■ • ■ , where the x/s are in Ma. All

such sequences are in the same bounded set Ua of (Pi, Pf). Therefore,

Qi(Um(x)) = Qj({To(x), Tx(x), • • • , Tm(x), 0, 0, 0, • • • })

tn m

=   22 1i(Tn(x))   =   22 qj(Anv(xf))
n=0 n=0

ior m, v = 0, 1, 2, • • •  and xvEMa for each v, i.e., (2.1) holds.

Conversely, suppose (2.1) is true. Let x = x*£Pi. Then Xi£(same)

bounded set Ma in P for k = 0, 1, • • • . For each j and each n = 0,

1, ■ • • , we claim that

00

(2.3) 22 qj(Ank(xk)) < + oo.
Jt=0

For, by (2.1), given j there exists P„,, =S 0 such that qj(Ank(xk)) gKa,j,

n, k = 0, 1, • • ■ . It now follows, as in the first part of the proof, that

there exists a number R = R(n, j, i) such that qj(Ank(xf)) gRpi(xf)

iork = 0, 1, • • • . Thus (2.3) is valid.

Since

m /     oo \

y™ = 22 ii ( 22 Ank(xk))
n-0        \ k=0 /

is a nondecreasing sequence of nonnegative numbers, it suffices to

show that |ym} is bounded above in order to conclude that A is

l-l. For agivenj,xEE and v = 0, 1, ■ ■ ■ .define

oO

Sj(x) = ^2<n(A"v(x)).
n=0
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It follows, using (2.1), that Sj is a seminorm on E. Property (2.1) now

implies, as before, the existence of a number A^O, where T depends

on j, i but is independent of n and v in, v = 0, 1, • • • ), such that

Sjix)STpiix) for xEE. Using (2.3) we obtain easily that {ym} is

bounded above and the proof is complete.

Under (2.1) we have

m       oo oo       m oo       oo

lim zZ zZ, Ankixk) = lim zZ X A„kixk) = zZ zZ Ankixk).
m     n=0 k=0 m      k—0 n-0 k=0 n—0

The following theorem is now obvious.

Theorem 2.4. The method A = iA„k), considered as an l-l method,

is absolutely L-regular if and only if (2.1) holds and also

m

lim zZ, Ankixk) = L(x*),        ft = 0, 1, • • ■ ,
m      n=0

for {xk}EEi.
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