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Abstract. The Theorem of Ritt on the decomposition of the

perfect differential ideal generated by a single irreducible differ-

ential polynomial is, here, generalized to system of polynomials

satisfying certain conditions. We use these results to prove that

all solutions of the iV-body problem, excepting the solutions for

which one or more of the ry (the distance between the masses Mi,

M,) is zero, belong to one irreducible manifold.

Introduction. In [3, p. 22] Ritt proved that the manifold of zero's

of a system of differential polynomials is a finite union of irreducible

manifolds. If the system consists of a single irreducible differential

polynomial P, then the manifold of F breaks up into an irreducible

general manifold and a certain number, possibly zero, of singular

manifolds. In this paper the latter result is generalized to systems of

polynomials: F=FX, ■ ■ ■ , Fn, w^l satisfying certain conditions.

These conditions are almost always satisfied in problems of particle

mechanics. When we apply these results to the Af-body problem, we

prove that all solutions of the Af-body problem, excepting those for

which one or more of the r,-y (the distance between the point masses

Mi, Mf is zero, belong to one irreducible manifold (the general mani-

fold). The solutions of the Af-body problem for which one or more of

the rtj is zero constitute the singular manifolds. In particular, the

equilateral triangle, isosceles triangle, straight line solutions of the

three-body problem belong to the general manifold. However, this

paper still does not answer the question whether any singular solution

belongs to the general manifold.

For the applications to mechanics only Theorem 1 and Corollary 1

is needed and the number of variables can be assumed to be the same

as the number of equations. In order to obtain a proper generalization

of Ritt's Theorem on the decomposition of a single differential poly-

nomial in an arbitrary number of variables we have proven our results

for the case where the number of variables is = the number of

equations, and extended these results to systems of greater generality

than that required for problems in particle mechanics.
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Notation. To avoid repetition we shall adhere to the following: A is

a differential field of characteristic zero (i.e. a field with a given

derivation; in our application to mechanics the derivation is the

derivative with respect to the time t)

K\X] = AjAi, • • • , Xn, An+i, • • • , X„+mf

is the ring of differential polynomials in the A's and all their deriva-

tives with coefficients in A.

A is a set of n differential polynomials Fi, • • • , FnEK{X}. The

max order of Xt in the system F is r,-, i= 1, • • • , n+m

J = detidFi/dX^);    i,j = 1, ■ ■ ■ ,n,

R = A7(X,O))(0 Sj Srtill SiSn;0Sj < °° iin<iSn + «)].

R{ F'} is the ring of polynomials in F[, • • • , Fn (' denotes deriva-

tives) and all their derivatives with coefficients in R.

R = A[(Z,0>) il SiSn+m;0 Sj S r/)].

Note that AC AC A, JER- J and A depend on the ordering of the

A's, while F and R do not.

(A), \/F, is the ideal, radical ideal, respectively in the ring A or R

generated by F.
[F], {f}, is the differential ideal, perfect (radical) differential

ideal, respectively in the differential ring AiA}.

If A is a radical ideal of a ring U and vEU, then A :v is the radical

ideal consisting of all uEU such that vuEA.

v will always denote a nonnegative integer.

K(f) denotes the differential field extension of A by 7

Lemma 1. For any <2EAJ A] there exists v such that J'QER{ F'}.

If Jj±0 then the elements (Ff) ilSiSn; 1SJ<°°) are algebraically

independent over R.

Proof. Let 7^0, let r(F')EA[(Fjw)(lg^w; 1 £/<•)] and
let A(F') =0. Let p he the highest order derivative of the Yi occurring

in T. Then

0 = dT/dxin+P) = ± idT/dF^KdF^/dX^)
,=i

= JZ (dT/dFlP))(dFi/dxlrk)).
i—l
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This is a system of n linear homogeneous equations with determinant

J^O, so that dT/dFlP)=0, i = l, ■ ■ ■ ,n.
To show existence, we note that the set of QEK{X} ior which

Lemma 1 holds is a ring which contains P. It suffices, therefore, to

prove existence for Xf; lgign,ri<j< °o . Assume inductively that

the lemma holds for Xf, 1 gign;ri<j<p. Consider the system of n

equations

ft = i (dFr)/sxrp-i))xrp) + a,
i=l

= J2 (dFfdX-^X^ + Ai,       i - 1, • • • , n,
i=l

AiEK^X^) (lgkgn+m; Ogj<rk+p)]. By our induction as-

sumption there exists v such that J"AiER{ F'}, i= 1, • • • , n. Since

the determinant of this system is T, we have J'+1X^+pER{ F'}.

Corollary. {p}: Jl^R = y/F: J.

Proof. Clearly VF:JE {P} :/HP. Let <2£ {p} :/nP, then
(JQYE [F]C\R. By the algebraic independence of (F?) (lgkgn;

lgj< °°) over P, we have (TQ)'E(F) so that JQEy/F and

QEVF-.T.

Theorem 1. Let 9 be a prime ideal of R, let PC<P, let J£(P and let

{6>}: jr\R = tP. Then {cP}: / is a prime differential ideal of K {X}

and is a minimal differential prime divisor of {(?}.

Proof. Let PQE_{<S>} -J; P, QEK{X}. By Lemma 1 there exists

v such that J'P = P[F'], T'Q=Q[Ff[];JP, QER. Thus PQE{(?}:J
(~\R=a>. Since 6> is prime, one of P, Q, say PES' and P£{<?} :J.

Hence {(?}: J is a prime differential ideal oi K{x}. Also, any prime

differential ideal containing {(?} and not containing J must contain

{(P} : J. Hence {(?}: / is a minimal differential prime divisor of {(?}.

Corollary 1. Let JE\/F and let y/F:J be a prime polynomial

ideal of R. Then {F}:I is a prime differential ideal of K {X}.

Proof. Let P = VF:J then {(?} :/= { VF:j} :IE { {F} :j} :J
= {F}:J. Now, {F}:inR = VF:T (corollary of Lemma 1) and
by Theorem 1 { F} :T is a prime differential ideal of P{jf}.

Corollary 2. Let (F) be a prime ideal of R and let JE(F). Then

the differential dimension of { F} :T is m.
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Proof. Let /= (7, • • • , /B+m) be a generic zero of {F} :J. Since

JE{f}-J, J does not vanish at X =f. Thus

/f,+ 1> E Kifn+l,   ■   ■   ■   ,fn+m)((fk)    (1  g k S H] 0 S j S !>)),

t=  1,   •   •   •  ,».

Hence differential dimension of {F} :J is Sm. Let AEA{ An+J, • • • ,

Xn+m} vanish at A=/. Then TE {F} :jr\R = VF:J = (F). Let

Si = max (order of T in A,, r/), i = 1, ■ ■ ■ , n + m, then (P, the

polynomial ideal generated by F in the polynomial ring

K[(XiJ>) (ISiSn+m; OSjSs/)] is a prime ideal with generic zero

(fP), 1 SiSn+m; 0SjSs(. Now rank of (dFi/dX^)| x=/ is n. Hence

transcendence degree of L=K((f\1)) (1 SiSn+m; OSjSs/)) over A

is Z£i"(**+l)-» and (/$*>), ISiSn+m, 0Sj<rt il ISiSn,
OSjSsi if n<iSn+m, is a transcendence base for L over A [l,

p. 84]. Hence T = 0 and differential dimension of {F} :J is m.

Remark. When n = 1, F=FU F irreducible over K, then (F) = y/F

= y/F: J (J is the separant of F) is a prime polynomial ideal of A.

We thus, obtain Ritt's Theorem on the decomposition of {F} [3,

p. 31]. For this case using the fact that dF/dX/i'E{F} :J,

i = l, ■ ■ • , m + l, Ritt obtained the additional result that { F} :J is

independent of the ordering of the Xi. Thus one can speak of the

manifold of { F} :J as the general manifold and of the other irreduc-

ible components of {F} as the singular manifold of {F}. We can

extend these notions to the case where n > 1 if we assume the fol-

lowing:

(1) The radical ideal (P generated by F in

R = A[(A,-") (1 SiSn+m;0 Sj S r/)}

is a prime polynomial ideal.

(2) Let J be the Jacobian of F with respect to the highest order

derivatives of any n of the n+m indeterminates Xi. Then 7E<?

(that is, JE® for every ordering of the X/).

For such a system F we can again speak of the manifold of {f}:J

as the general manifold of {F}, and of the other irreducible compo-

nents of the manifold of { F} as the singular manifolds of { F}. For

clearly, y/F = R6> is a prime ideal of ADA, so that, by Corollary 1 of

Theorem 1, ji7}:/ is a prime differential ideal of A{aJ; if the

Jacobian J* for some reordering of the At- were in {F} :J then we

would have

/* e {f} :j r\ r r\ R = vf r\ R = <?,

contrary to assumption (2), above.
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Theorem 2. Let (P be a prime ideal of R such that FES' and J£(P.

Let X =f be a zero of {(?} such that f is a generic zero of (P. Then

{(?}: J is a prime differential ideal of K{X} with generic zero f.

Proof. Let <2£ {(?} :JC\R. Since J(f)*0, Q(f) = 0 and QE<P.
Thus {G>}: JC\R = (?, by Theorem 1, {(?}:./ is a prime differential

ideal. Let g be any zero of {(?} such that I does not vanish at g,

then f—>g is a differential specialization over K. For, let QEK{X}

and let Q(f)=0, then there exists v such that J"Q = Q[F'], QER

(by Lemma 1). Hence Q(f)=0 and QE<P. Thus Q(g)=0 and since

./(g) 5^0, <2(g)=0. Therefore /—>g is a differential specialization over

K and / is generic zero of {<?}:/.

Theorem 3. Let (Pi, ■ • • , (Ps be a complete set of irredundant minimal

prime ideal divisors of F not containing T and let {<Pi}:JC\R = (Pi;

i = 1, • • • , s. Then {(Pi}: J, ■ ■ ■ , {(?,}: J is a complete set of irre-

dundant minimal prime differential ideal divisors of F not containing J.

Proof. Since {(Pi} :jr\R = (?i, /£(?,- and by Theorem 1, {(Pi}: J

is a prime differential ideal of K {X}. Let 3D be any prime differential

ideal divisor of P not containing /, then 3Df^\P is a prime ideal

divisor of F not containing /. Thus 3DP\P contains some (P.- and

2D3 {SDHP} :/3 {o*\-} :J. Hence if 3D is a minimal prime differential

divisor of F then 3D ={(?,}: J. To show irredundance, let {(Pi}:T

3 {(?,■}:/, then {G>i}:jr\R^{(Pj}:jr\R and (Pi2(P,-. Hence i=j

and {(Pi}: T, • • ■ , {(?,}: T form a complete set of irredundant mini-

mal prime differential ideal divisors of P.

The Ar-body problem. The cartesian coordinates (xj, y„ z,),

i=l, ■ ■ ■ , N oi N point masses Mi, subject only to their mutual

gravitational forces satisfy the following system of equations:

x'i — 22 Mj(xj — Xi)/rfj = 0,
i^i

yf - 22 Mj(yj - yt)/r\j = 0,        i= 1, ■ ■ ■ ,N,
jyii

Zi  — 22 Mi(zi ~ zi)/rH = o,

ra — (xt — Xj)   — (yi — yf)   — (Zi — zf)   = 0,    1 g i <j g N,

where ry denotes r,-; (1 gj<igN).

The left-hand side of this system of equations when cleared of

fractions is a system P of n = 3N+N(N—1)/2 differential polyno-

mials in n variables. F belongs to the differential ring K {X} where
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K{ X} = K{x, y, z, iuf) ilSiSN;lSjSN;i*j)}

(we write x for xi, • ■ ■ , xN etc.) and A is the field of constants

Q(Mi, • ■ ■ , Mn), <2 = rationals. In accordance with our notation

above, A = A[x, y, z, x', y', z', x", y", z", (ry)]; T is a power of JJra.

This system F, when we look at it as a system of polynomials in the

ring A, is a characteristic set (i.e. is in triangular form) with a para-

metric set consisting of the 6A elements x, x', y, y', z, z'. It is not

difficult to show that this characteristic set satisfies the irreducibility

conditions of Ritt [3, p. 89]. Thus A is a characteristic set of a prime

polynomial ideal. Also, / is a power of the product of the initials of

F, so that iF):Jx (consisting of all <2EA such that J'QEiF), v

depending on Q) is a prime polynomial ideal [3, p. 97]. Since

iF):J<° = VF:J, it follows from Corollary 1, Theorem 1 that {F} :J

is a prime differential ideal in the differential ring K{x, y, z, irif)}

and {f} = {f}:JC\{F,J}. Thus any zero of F for which Ur^O,

is a point of the general manifold of {F}. In particular the equilateral

triangle solution of Lagrange and the isosceles triangle solution of the

three body problem are points of the general manifold. This is not,

entirely, without analytic significance. For, some doubt has been

raised about the validity of the practice of astronomers of obtaining

periodic solutions of the three body problem by perturbing the initial

conditions of the equilateral triangle solution [2, §s, pp. 75-78]. This

practice, clearly, would have been completely without merit if the

equilateral triangle solution had been in a separate manifold. While

our results do not prove the existence of periodic solutions, they do

prove that the equilateral triangle solution is a limit of nonequilat-

eral triangle solutions (possibly complex solutions) [3, p. 123].

References

1. W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, Vol. II, Cam-

bridge Univ. Press, Cambridge, 1952. MR 13, 972.
2. E. Leimanis, Some recent advances in the dynamics of rigid bodies and celestial

mechanics. Dynamics and nonlinear mechanics, Surveys in Appl. Math., vol. 2, Wiley,

New York and Chapman & Hall, London, 1958. MR 20 #2877.
3. J. F. Ritt, Differential algebra, Amer. Math. Soc. Colloq. Publ., vol. 33, Amer.

Math. Soc, Providence, R. I., 1950. MR 12, 7.

Stevens Institute of Technology, Hoboken, New Jersey 07030


