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Abstract. A sufficient condition is given for all solutions of

the adjoint of an Mth order linear differential equation to have an

infinity of zeros; an example is presented which shows that for

every integer n>2, there exists an nth order equation, all of

whose solutions have a finite number of zeros, but the adjoint

has only solutions with an infinity of zeros. In addition, some

open equations on conjugate points are answered.

1. Introduction. The adjoint equation for the wth order linear dif-

ferential equation

n-l

(1.1) *<»> + zZpic{t)xm = o

is defined to be the equation (see [5, p. 66])

n-l

(1.2) xM + zZ (-l)"-k(pk(t)x)w = 0.

Zeros of nontrivial solutions to such equations are counted accord-

ing to multiplicities (see [5, p. 67]). The nth conjugate point to a is de-

fined as in [l] and [3], and is denoted by np(a) whenever it exists.

Nontrivial solutions are oscillatory if they have an infinity of zeros,

and are nonoscillatory, otherwise; if all solutions are oscillatory, then

the equation is said to be strongly oscillatory [2]. Nonoscillatory equa-

tions have all solutions nonoscillatory, and otherwise the equation is

oscillatory. Disconjugate on a connected set E means that the number

of zeros of a nontrivial solution cannot equal the order of the equa-

tion.

In personal conversations with the late Professor J. L. Barrett, and

Professor T. L. Sherman, the following open questions were formu-

lated for higher order equations:

(i)  Does the existence of vp(t) for all t, all p^l, imply oscillation?

(ii)  Does nondisconjugacy on every half-line imply oscillation?

(iii)  Does oscillation imply oscillation of the adjoint?

(iv)  Does strong oscillation imply oscillation of the adjoint?
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The purpose of this paper is to answer (i)-(iv) in the negative for

n>2. Classes of equations for which (i)-(iv) are true have been in-

vestigated by Hanan [4].

2. Lemma. If f and g belong to C2[0, °o) and f2g'>0, then yx(t)

=f(t) cos g(0 and y2(f) =/(/) sin g(t) form a fundamental set of solutions

for the differential equation (p(t)y')+q(t)y = 0, where p = l/(f2g') and

q    f     f L/¥_ '
3. Lemma. Suppose x(t) and y(t) are linearly independent solutions

of the equation (p(t)y')' + q(t)y = 0. The general solutions of

[(p(t)z')'+q(t)z]M =0and (p(t)w^n+1))'+q(t)wM=Ohavetheform

n—1 /» £

z(t) = ax(t) + by(t) + 22Ck\    [x(t)y(s) - x(s)y(t)]skds,
k=0 J 0

n-l /. (     (f _   An-l C'    (t — S)n~l

w(t) = 22 Cktk + a-— x(s)ds + ft-—y(s)ds,
k-o J o     (n — 1)1 J o     (n — 1)!

respectively, where a, b, Co, Cx, ■ ■ ■ , C„_i are arbitrary constants.

Throughout the remainder of the paper, Lz = 0 shall denote the

equation [(p(t)z')'+q(t)zYn) =0 and L*w = 0 shall denote (p(t)wln+1))'

+ q(t)wM =0. If p(t) and q(t) are sufficiently differentiable, then the

adjoint of Lz = 0 is the product of the adjoint of (p(t)z')'+q(t)z = 0

with the adjoint of y{n) = 0, and both Lz = 0 and its adjoint have the

form (1.1). In particular, if p(t) and q(t) are of class Cn+l, thenL*w = 0

is the adjoint of Lz = 0, and both have the form (1.1).

4. Lemma. Let F(t),G(t),H(t) be continuous on E= [a, b), and suppose

that G(t) and H(t) are positive. If the Lebesgue integrals fEF(t)G(t)dt,

JBF(t)H(t)dt equal + oo and lim,_»0 G(t)/H(t) =A, then

f  F(s)G(s)ds

lim-= A.
t—*fi    c'

j    F(s)H(s)ds
J a

5. Lemma. Suppose x(t) and y(t) are linearly independent solu-

tions of the equation (p(t)z')'+q(t)z = 0, and p(t) and q(f) belong to

t>+2[0,  +oo). If

/i oo
y(s)skds = +oo (Ogkgn- 1),

0
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(ii)       lim   I    x(s)ds = 0    and      J    x(s)ds > 0       for t > 0,
t—>»   J o J 0

then all nontrivial solutions of Lz = 0 are oscillatory and all nontrivial

solutions of L*w = 0 are nonoscillatory.

Proof. It will be demonstrated that all nontrivial solutions of

Lz = 0 have an infinity of zeros on [0, + °° )• By Lemma 3, a nontrivial

solution of Lz = 0 has the form

8(0 = x(t) [fl + £ Ct f y(s)sHs~\ + y(t)\b - zZ <7 f  xis)skds~] ,
L 4=0 "I 0 J L 4=0 J 0

where at least one of the constants a, b, Co, • • • , Cn-i is not zero. To

prove that zit) is oscillatory, it will be shown that zit) changes sign

on every half-line. There is nothing to prove if all the Ck's are zero.

Otherwise, there is a largest index j such that Cj^AO. By (i) of the

hypothesis, and Lemma 4,

n—l r* t

a+zZCk]   yis)skds
4=0 " 0

lira - = Cj,

I    yis)s3ds
J o

and therefore a + / "In Ckflyis)shds is nonzero on some half-line

[T, 4- oo). Given any half-line, yit) has two consecutive zeros to, h>T

in this half-line. The Wronskian of xit) and yit) equals c/pit) lor

some nonzero constant c. Since

<u) = -77777^ \a + £ Ck f %W^1 >       »' - 0,1,
y(h)P(u) L      4=0    J o J

and y'(t) has different signs at to and h, it follows that z(t) must

change sign between 7 and h. Therefore, z(t) is oscillatory.

To prove that L*w = 0 is nonoscillatory, let w(t) be a nontrivial

solution of this equation, and suppose that w(t) has infinitely many

zeros on t^O, in order to obtain a contradiction.

Since all derivatives of w(t) must vanish infinitely often on every

half-line, Lemma 3 says every half-line contains points t such that

in - 1) !C7-i + fl I    xis)ds + b f yis)ds = 0.
Jo " 0

Since by hypothesis lim*..*, /o'x(5)fi,5 = 0 and \imt^x fl0yis)ds= °o, it
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follows that b = 0. But then Cn_i = 0, and since f{,x(s)ds>0 for t>0,

a = 0 also. Therefore, w(t) must be a nonzero polynomial with an in-

finity of zeros; the contradiction is reached, and the proof is complete.

6. Lemma. If x(f) and y(t) belong to C[0, oo) and are linearly inde-

pendent solutions of w" + k2w = 0 throughout an interval cgtgd,

cS^O, then for each number a, Ogagc, there exists a polynomial Q(t)

= an-Xtn~l+ ■ ■ ■ +axt+a0 and constants Cx and C2 such that

/" (t — 5)"-1                   r' (t — s)n-1
-— x(s)ds + C2       --— y(s)ds + Q(t)

0     (n — 1)!                        J 0    (n — 1)1

vanishes at t = a and is a nontrivial solution of w" + k2w = 0 on cgtgd.

Proof. The Taylor formula

n-i /?(wc) rl (t - -O"-1
F(t) = E ^~- (t -c)*+        i---— F^(s)ds

k~o      kl J c     (n — 1)\

can be applied to P(0 —x(t),y(t) on c g t gd to get

r< (t - s)n~l

I     -x(s)ds = Qx(t) + fti cos(kl + 6X),
J c     (n — 1)1

r'(t- sy-1
-—y(s)ds = Q2(t) + b2 cos(kt + Of),

J c    (n — 1)!

where <2i(0 ar>d (MO are polynomials of degree at most n — 1, bxb2

9^0, 01^02 modulo tr.

Select constants Cx and C2 not both zero such that

r r' (a — s)"-1 "1
Ci   Qx(a) +-~ x(s)ds

L J a     (n — 1)\ J

r Ce (a - 5)"-1 1

Put

cc (t - s)n~x re (t - s)"-1
Q{t) = ~ Cl        ,-fffx^ds ~ C2      T-7T7 y^ds

J o    (n — 1)\ J o    (n — 1)1

- CxQx(t) - C2Q2(t).

Then Q(t) has the form asserted and

c' (l - s)n~l r' (t - •O"-1
w(/) " Cl      ~,-Tff x^ds + °2      ~,-777 y^ds + 0(0

J o    (n — 1)! J o    (n — 1)!
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vanishes at t = a. On the interval c^t^d,

wit) = Cibi cos(kt + Oi) + C2b2 cos(kt + 02).

Since 77^0, 0i^02 modulo ir, and not both G\ and C7 are zero, w(t)

is a nontrivial solution of w" + k2w = 0 on c^t^d.

A proof of the next lemma can be found in [3].

7. Lemma. For every integer N>0, there exists an r(t) in CN[0, l]

such that

(i) r(0)=0,r(l) = l,

(ii) r'(t)>0 on 0<t<l,

(iii) r'(t) has a zero of multiplicity N—l at t = 0 and t = l.

8. Lemma. Suppose E is connected, [a, b]EE, u, vECN(E — (a,b)),

REC[a, b], and C>0. If u and v' are positive at t = a and t = b,

v(a) <v(b) and R(t) > 0 on (a, b), then there are extensions U, VE CN(E)

of u, v respectively such that

(i)   U(t)>0 on a^t^b,

(ii) PaU(t)R(t)dt=C,
(iii) v'(t)>0 on a^t^b.

Proof. Let Pa(t) and Pb(t) denote the Lagrange interpolation

polynomials which assume the initial values of u(t) at t = a and t=b,

respectively. For all small h>0, Pa(t) and all its derivatives are one-

signed in (a, a+h); a similar statement is true for Pb(t).

Let r(t) be as in Lemma 7. For any constant k>0 all sufficient-

ly small h>0 put

A uit) = u(t)        ilt<E(a,b),

= rC—-^\k+   ^-r(~-T^)   Pa(t)       HtE[a,a+h],

= k        ii t E [a + h, b - h],

/t- b + h\ r /t - b + h\-\

iltE [b-h,b].

Then Ahk(t)>0 on [a, b] for all small h>0 and AhkECN(E). If h>0

is sufficiently small, then fa Ahk(t)R(t)dt<C for all small k>0, and

Ja Ahk(t)R(t)dt> C for all large k>0. This integral is a continuous

function of k for fixed h, and therefore (i) and (ii) hold with U = AUc

lor some pair h, k.

To establish (iii), apply the previous result to v' to obtain an exten-

sion Vi such that J7>0 on [a, b] and /„ Vi(t)dt=v(b) -v(a). Define
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V(t)=v(t) off [a, b], V(t)=fla Vx(s)ds+v(a) on agtgb. Then V ex-

tends v, VECN(E), and F'>0 on [a, b].

9. Lemma. Suppose [a, b] is contained in T, T is connected, and

A, B, C are positive constants. Given f and g in CN(T — (a, b)) such that

f2g'>0 and g(a)=2kir, g(b) = 2kir+ir for some integer k}zO, there are

extensions F and G of f and g, respectively, such that F and G are in

CN(T) and

(i)  F2G'>0on [a,b],

(ii) fZt*F(t) sin G(t)dt^A, OgpgN-1,
(iii) fa F(t) cos+ G(t)dt = B, /as P(0 cos~ G(t)dt = C.

Proof. If smoothness were not important, then on agtgb, F(t)

could be taken to be a step function with three steps, and G(t) a

piecewise linear function of three segments. These functions can be

modified via Lemma 8 to yield the required functions of class CN.

The central idea in establishing (ii) and (iii) is to select an interval

[c, d] inside (a, b) and make F(t) constant and G(t) linear on [c, d],

with G(d) =2k-K+ir/2. Then (ii) is obtained by choosing F(t) large

and G'(t) small on [c, d]. Since (ii) remains true if G'(t) is decreased

on [c, d], the integral ff F(t) cos G(t)dt can be made smaller than the

given constant B. Now G(t) is defined via Lemma 8 on the remainder

of [a, b], subject to the conditions GECN and G'>0. Then P(0 is

defined on [a, c] and [d, b] in order to satisfy /* F(i) cos+ G(t)dt=B,

fa F(t) cos- G(t)dt = C, and F(t)>0 (see Lemma 8), demonstrating

(i)-(iii).

10. Theorem. Given an integer N>2, there exists an Nth order linear

differential equation Lz = 0 such that

(i) Lz = 0 is nonoscillatory on L2:0,

(ii) L*w = 0 is strongly oscillatory on LSiO,

(iii) ?7j,(0 exists for all t^tO, all integers p^l.

Proof. The equation Lz = 0 will have the special form

[(p(t)z')'+q(t)z]M =0, where A^ + 2; see Lemma 3. To construct

the second order equation, let Jn=[an, bn], n^.1, be an interval

in [0, oo), and suppose that &i = 0, bn<an+x, cx„—> oo, and fj\tN~3\dt

is finite, where /denotes the union of all the Jfs, n= 1, 2, 3, • • • .

Define a step function/ and a linear function g on J by the follow-

ing scheme: g(af) is an odd multiple of tr, g(bf) is an even multiple

of ir, g(af) is less than g(bf), g(an+x) =g(bn)+ir, x„G(0, 1) is chosen so

that w"+xf2w = 0 has a nontrivial solution with n + l zeros on

Jn, g(t)=xfl(t — af)+g(af) on the interval J„, and f(t)=xn on /„,

n = l, 2, 3, ■ ■ ■ .

For such/ and g, the integrals fj\tpf(t) sin g(t)\dt, OgpgN — 3,
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fjf(t)\sin g(t)\dt, Sjf(l) cos g(t)\dt are finite, and each is bounded

by the integral fj max{   V>\ :0^p^N — 3}dt.

Define In=Jjnf(t) | cos g(t)\ dt, »=1, and put B1 = I1+I2+IS,

Bn = In+2 for n>l, Cn = In for »=1. Let T= [a„, bn+i], A = «, B=Bn,

C= Cn in Lemma 8 to extend/ and g as CN functions to the interval

between Jn and Jn+i, n^l. The extended functions will be denoted

by/ and g also.

Since zZnll (Bn - Cn)>fjJ(t) | cos git) \ dt ik > 1), £;=1 Bn, zZZ=i Cn
both equal ///(<)|cos g(t)\dt, and /r„/(<) cos g(t)dt = 0, it can be

verified that /o/(0 cos g(2)d< is positive for £>0, and

lim   J   /(t) cos g(*)d* = 0.
t—* oo   •/ o

The construction also leads to

/»   CO /*   00**>/(/) sin+ 5(0^/ =»,      I    (»>/(/) sin- g(/)a'/ <oo,0g/>giV-3.
o J 0

Put x(/) =f(t) cos g(0, y(0 =/(0 sin g(t). By Lemma 2, x(t) and
y(7 form a fundamental set of solutions for a second order equation

of the form

(P(t)z')' + q(t)z = 0,

where p(t) = l/(f2(t)g'(t)). The preceding paragraph shows that x(t)

and y(t) satisfy Lemma 5.

By Lemma 5, Lz = 0 and L*w = 0 are strongly oscillatory and

nonoscillatory, respectively. Lemma 6 shows that t}P(t) exists for all

£2^0, all integers p^l. This proves Theorem 10 and answers the four

questions in the Introduction in the negative for n>2.
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