DEGREES OF SUMS IN A SEPARABLE FIELD EXTENSION
I. M. ISAACS

Let F be any field and suppose that E is a separable algebraic ex-
tension of F. For elements a € E, we let dga denote the degree of the
minimal polynomial of a over F. Let «, SEE, dga=m, dgB=n
and suppose (m, n)=1. It is easy to see that [F(a, B):F|=mn,
and by a standard theorem of field theory (for instance see Theorem
40 on p. 49 of [1]), there exists an element v € E such that F(e, )
= F(y) and thus dgy =mn. In fact, the usual proof of this theorem
produces (for infinite F) an element of the form vy =a+N8, with NE F.
In this paper we show that in many cases the choice of A& F is com-
pletely arbitrary, as long as A520. In Theorem 63 on p. 71 of [1], it
is shown that if #>m and # is a prime different from the characteris-
tic of F, then dg(a+B) =mn. The present result includes this.

THEOREM. Let ED F be fields as above and let a, BE E with dga=m,
dgB=mn and (m, n) =1. Then dg(a+N3) =mn for all N0, NE F unless
the characteristic, ch(F) =p, a prime, and

(a) p|mn or p <min(m, n),

(b) if m or n is a prime power, then p] mn and

(c) if g>m for every prime q| n, then p| n.

Proor. First we reduce the problem to one of group representa-
tions. We may assume without loss that E is a finite degree Galois
extension of F and let G be the Galois group. Then G transitively
permutes the sets of roots 4 = {a;|1<i<m} and B= {B,;|1<j<n}
of the minimal polynomials of « and 8. Let VCE be the linear span
of A\UB over F. Then V is a G-module over F and in the action of G
on V there exists orbits 4 and B with | 4| =m, | B| =nand (m, n) =1.
We show by induction on IGI that if &4 and BE B, then a+3 lies
in an orbit of size m#n, unless ch(F) =p and (a), (b) and (c) hold. This
will clearly prove the theorem when applied to A8 in place of 8.

Let H=G, and K =G;, the stabilizers in G of « and B. Then
|G:H| =m, |G:K| =n and since (m, n)=1, a standard argument
yields | G:HNK| =mn and H and K act transitively on B and 4 re-
spectively. It follows that G is transitive on 4 XB and thus all ele-
ments of V of the form a;+8; are conjugate under the action of G.
Suppose that a4 does not have exactly mn conjugates. Then not
all a4+B; are distinct and we may assume that a+8=a,+3, where
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a#o, or B#B. Then a—o, =P, —B#0 and the subspaces W, and W,
of V, spanned by A and B respectively, intersect nontrivially. Set
U=WiN\W, and observe that W;, W, and U are all G-invariant
spaces.

We remark at this point that if ch(F){|G|, an easy contradiction
could be obtained using the fact that Wy and W, are homomorphic
images of the permutation modules determined by the actions of G
on 4 and B. In this case, the modules would be completely reducible
and since HK =G, it is not hard to see that they can have only the
principal module as a common constituent. It would follow that G
acts trivially on U and thus fixes @ —a,. A contradiction results since
o, =af for some g&G and the order of this element is prime to ch(F).
It does not appear that this approach will lead to a full proof of the
theorem and we continue along a different route.

It may be assumed that G acts faithfully on V or else the inductive
hypothesis may be applied to G/N where N is the kernel of the action,
and the result follows immediately. Suppose now that there is a sub-
group Go<G which acts so that the orbits 4y and By of o and 8 under
G, satisfy mo| m, nol n, a,& Ay and ByEBy, where mo= IAOI and
no= |B0|. Then (m,, no) =1 and since a+8=a,+B, the number of
conjugates of a+B under Gy is <mno. Therefore, induction applies
and ch(F) =p, a prime, and by (a), p|mono or p <min(m,, no). Since
mo|m and no| %, (a) holds for m and #. Similarly, (b) and (c) for m,
and #, imply the corresponding statements for m and #. We may as-
sume then that no such subgroup G, exists.

Now, G permutes the set of cosets of U in W, and is transitive on
the set of those cosets which contain elements of 4. All of these,
therefore, contain equal numbers of elements of 4. We have ¢,
€ U+a and if Ag=AN(U+a), then | 4,||m. Let Go be the stabi-
lizer of the coset U4« in G. Clearly, HC G, and hence Gy is transitive
on B. We claim that G, is transitive on 4. If ;& 4,, then for some
gEG, af=a; Thus (U+a)=U+ai=U+a and so g&G,. This
establishes transitivity and by the preceding paragraph, we cannot
have Go<G. Therefore G stabilizes U+a and hence 4C U+a. By
similar reasoning, BC U+B. Now, 8;=u;+8 for some %;& U. Sum-
ming over §;& B, we obtain Zﬁj= > u;+nB. Thus nf =u-++, where
uE Uandy= Y _B;is fixed by G. Let N<IG be the kernel of the action
of G on 4. Then N fixes all elements of W12 U and thus N fixes #nf.
If ch(F)|n, then N fixes 8 and hence fixes all 8;=u,;+8. Thus N acts
trivially on V, the span of A\UB. Therefore, N =1 and G is isomorphic
to a subgroup of the symmetric group on 4. Thus I G| |m! and nl m!.
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Since n>1, this shows that the hypotheses of (c) cannot occur if
ch(F)/n and thus (c) is proved.

Now suppose that ch(F){mn. By interchanging 4 and B in the
above argument, we obtain |G||n! and all prime divisors of | G| are
<min(m, n). If ch(F)=0 or ch(F)=p, a prime>min(m, n), then
ch(F)} | G|. If m or n is a prime power, we may suppose that m = ¢¢
and let Q be a Sylow g-subgroup of K. Then |K:KNH| =g¢* so
K=(KNH)Q and it follows that Q is transitive on 4. Thus under
any of the assumptions: ch(F) =0, ch(F)=p>min(m, n) or m =g,
there exists a subgroup LE K which is transitive on 4 and such that
ch(F)} ] L[ . The proof will be complete if a contradiction follows from
the existence of such an L.

We have seen that n8=u-+vy where u& U and # is fixed by G. As
UC W, we have u = Z&ai, where £§;E F and «; runs over 4. Now if
x&ELCK, we have

T 1 z 1
(*) =28 =_EE,’0£¢+-—’Y.
n n

Now set 6§ = Zai, and observe that since L is transitive on 4, we have
ZIGL of = (] L[ /m)d. Now, summing (*) over L, we obtain

L L
|L|B=u2&6+%7-

mn

Note that division by m and # in the above equations makes sense in
V since ch(F){mn. Since ¥ and § are fixed by G and ch(F)}|L|, it
follows that 8 is fixed by G. This is a contradiction since 8#0, and
the proof is complete.

Now let G be any finite group and suppose that V is any faithful
finite-dimensional G-module over a field K. Suppose that », v& V are
permuted by G into orbits of sizes m and # respectively and that v
lies in an orbit of size k. Then there exist fields ED FO K, with E a
finite separable extension of F, and elements o, B& E with dga=m,
dgB=n and dg(a+p) =*.

The construction is as follows. Let e=dimg(V) and let X1, X.,

.« -, X, be indeterminates. Set R=K[X;, - - -, X.] and let E be
the quotient field of R. Now fix a basis for V and identify this basis
with the X; so that V is identified with the linear span of the X in
R. Now it is clear that each element of G determines an automorphism
of R and hence of E. Let F be the fixed field of G in E and let & and
B be the elements of E corresponding to % and v. These elements
clearly have the desired properties.
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It follows that to establish the best possible improvement of the
present theorem with conditions given in terms of m, n and ch(F),
it suffices to consider only group representations. It is possible
that the theorem could be improved by dropping the possibility
p <min(m, n) in (a). Some limitations on possible improvements are
given by the following examples for m =3 and n=4.

ExampLE 1. Ch(K) =2. Let G= A4, the alternating group on four
symbols. Let V* be a four dimensional vector space over GF(2) and
let G permute a basis, {'w, x, v, z}, in the natural manner. Let
Vo=1{0, w+x+y+z} and let V="V*/V,. The image of w in V has
four conjugates under G and the image of w+x has three conjugates.
The sum of these elements has four conjugates.

ExaMPLE 2. Ch(K)=3. Let V be a four dimensional vector-space
over K =GF(3), with basis {w, x, y, 2}. Let G be the group generated
by the elements p, o, 7&EGL(V) whose matrices are

1100 1 0 0 O 1000
0100 0-1 0 O 0100
p= ) o= ’ T= .
0 010 0 1 1 0 0 0 01
00 01 0 1 0 1 0010

Then G is the direct product of the subgroups {p, ¢) of order 6 and
(r) of order 2. The orbit of w under G is {w, w+x, w—x} and the
orbit of y under G is {y, y+x, 2, z+x}. However, the orbit of w4y
is {'w-i-y, wt+y+tx, wt+y—=x, wtz, wtztx, w+z—x}, which has
six elements.
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