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Let F be any field and suppose that £ is a separable algebraic ex-

tension of F. For elements aEE, we let dga denote the degree of the

minimal polynomial of a over F. Let a, BEE, dga = m, dgB = n

and suppose {m, n) = l. It is easy to see that [F(a, B)'.F]=mn,

and by a standard theorem of field theory (for instance see Theorem

40 on p. 49 of [l]), there exists an element yEE such that F(a, 8)

= F{y) and thus dgy = mn. In fact, the usual proof of this theorem

produces (for infinite F) an element of the form y= a+\B, with \£F.

In this paper we show that in many cases the choice of X£F is com-

pletely arbitrary, as long as A 5^0. In Theorem 63 on p. 71 of [l], it

is shown that if n>m and n is a prime different from the characteris-

tic of F, then dgia+/3) =mn. The present result includes this.

Theorem. Let E^F be fields as above and let a, BEE with dga = m,

dgB = n and {m, n) = 1. Then dg(a+X/3) =mnfor aWK^O, \EFunless

the characteristic, ch(F) =p, a prime, and

(a) p\mn or p<minim, n),

(b) if m or n is a prime power, then p \ mn and

(c) if q>m for every prime q\ n, then p\ n.

Proof. First we reduce the problem to one of group representa-

tions. We may assume without loss that £ is a finite degree Galois

extension of F and let G be the Galois group. Then G transitively

permutes the sets of roots A = {a,-| 1 ̂ iSm} and B= {Bj\ l^j^n}

of the minimal polynomials of a and 8. Let FC£ be the linear span

of A^JB over F. Then V is a G-module over F and in the action of G

on V there exists orbits A and B with \A\ =m, IB] =»and {n, n) = 1.

We show by induction on | G\ that if aEA and BEB, then a+8 lies

in an orbit of size mn, unless ch(F) =p and (a), (b) and (c) hold. This

will clearly prove the theorem when applied to X/3 in place of 8.

Let H = Ga and K = G$, the stabilizers in G of a and 8. Then

\G:H\ =m, \G:K\ =n and since {n, n) = l, a standard argument

yields | G'.HC\K\ =mn and H and K act transitively on B and A re-

spectively. It follows that G is transitive on AXB and thus all ele-

ments of V of the form at+B, are conjugate under the action of G.

Suppose that a+B does not have exactly mn conjugates. Then not

all at+Bj are distinct and we may assume that a+B = aa+Bb, where
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ayZcta or By^Bb. Then a—aa=8b— By^O and the subspaces Wi and W2

of V, spanned by A and B respectively, intersect nontrivially. Set

U = WiC\ W2 and observe that Wi, W2 and U are all G-invariant

spaces.

We remark at this point that if ch(F)\ \ G\, an easy contradiction

could be obtained using the fact that Wi and W2 are homomorphic

images of the permutation modules determined by the actions of G

on A and B. In this case, the modules would be completely reducible

and since HK = G, it is not hard to see that they can have only the

principal module as a common constituent. It would follow that G

acts trivially on U and thus fixes a — aa. A contradiction results since

aa.=a" for some gEG and the order of this element is prime to ch(P).

It does not appear that this approach will lead to a full proof of the

theorem and we continue along a different route.

It may be assumed that G acts faithfully on V or else the inductive

hypothesis may be applied to G/A where A is the kernel of the action,

and the result follows immediately. Suppose now that there is a sub- .

group Go<G which acts so that the orbits A0 and B0 of a and 8 under

Go satisfy m0\m, n0\n, aaEA0 and BbEBo, where w0=|^4o| and

«o=|Po|- Then (m0, n0) = l and since a+B=aa+Bb, the number of

conjugates of a+B under G0 is <m0no. Therefore, induction applies

and ch(F)=p, a prime, and by (a), p\mono or p<m.in(m0, no). Since

mo\m and no\n, (a) holds for m and n. Similarly, (b) and (c) for wo

and Wo imply the corresponding statements for m and n. We may as-

sume then that no such subgroup Go exists.

Now, G permutes the set of cosets of U in Wi and is transitive on

the set of those cosets which contain elements of A. All of these,

therefore, contain equal numbers of elements of A. We have a,

daEU+ct and if .4o = .<4P\(i7-T-a!), then | Ao\ \m. Let Go be the stabi-

lizer of the coset U+a in G. Clearly, HQGo and hence Go is transitive

on B. We claim that Go is transitive on Ao- If caEAo, then for some

gEG, aa=ati. Thus (U+a)°= U+ca= U+a and so gEGo- This

establishes transitivity and by the preceding paragraph, we cannot

have Go<G. Therefore G stabilizes U+a and hence AC. U+a. By

similar reasoning, BC.U+B. Now, Bj — Uj+B lor some UjEU. Sum-

ming over BjEB, we obtain ^j3y = ^Zuj+nB. Thus nB = u+y, where

uE Uand 7 = 23ft- is fixed by G. Let A<G be the kernel of the action
of G on A. Then A fixes all elements of Wi^)U and thus A fixes nB.

If ch(P)|», then N fixes B and hence fixes all 8j = Uj+B. Thus A acts

trivially on V, the span of AKJB. Therefore, A = 1 and G is isomorphic

to a subgroup of the symmetric group on A. Thus | G| \m! and n\ m!.
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Since n>l, this shows that the hypotheses of (c) cannot occur if

ch(F)\n and thus (c) is proved.

Now suppose that ch(F)\mn. By interchanging A and B in the

above argument, we obtain | G||»! and all prime divisors of | G\ are

^min(w, n). If ch(F)=0 or ch(F)=p, a prime>min(w, n), then

ch(F)|| G\. If m or n is a prime power, we may suppose that m = qe

and let Q be a Sylow g-subgroup of K. Then \K:K(~\H\ =qe so

K = (KC\H)Q and it follows that Q is transitive on A. Thus under

any of the assumptions: ch(F)=0, ch(F) =p>minim, n) or m = qe,

there exists a subgroup LQK which is transitive on A and such that

ch(F)\ I L\. The proof will be complete if a contradiction follows from

the existence of such an L.

We have seen that nB = u+y where uEU and 7 is fixed by G. As

f/C W\, we have u = ^^a.-, where £;£.F and a{ runs over A. Now if

xELC.K, we have

1  ^      x        1
(*) B = B = — £ &*< + — 7.

Now set 5 = 2_/at7 and observe that since Z, is transitive on A, we have

Z-jx^l °% = (| -H /nt)S. Now, summing (*) over L, we obtain

ww n

Note that division by m and w in the above equations makes sense in

V since ch(F)\mn. Since 7 and 5 are fixed by G and ch(F)|| L\, it

follows that 8 is fixed by G. This is a contradiction since 8^Bb and

the proof is complete.

Now let G be any finite group and suppose that V is any faithful

finite-dimensional G-module over a field K. Suppose that u,vEV are

permuted by G into orbits of sizes m and n respectively and that u+v

lies in an orbit of size k. Then there exist fields E^FQ.K, with E a

finite separable extension of F, and elements a, BEE with dga=m,

dgj3 = w and dg(a+B) =k.

The construction is as follows. Let e = dimx(F) and let X\, X2,

■ • • , Xe be indeterminates. Set R = K[XU ■ ■ ■ , Xe] and let E be

the quotient field of R. Now fix a basis for V and identify this basis

with the Xi so that V is identified with the linear span of the X( in

R. Now it is clear that each element of G determines an automorphism

of R and hence of E. Let F be the fixed field of G in E and let a and

8 be the elements of E corresponding to u and v. These elements

clearly have the desired properties.
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It follows that to establish the best possible improvement of the

present theorem with conditions given in terms of m, n and ch(P),

it suffices to consider only group representations. It is possible

that the theorem could be improved by dropping the possibility

p<min(wj, n) in (a). Some limitations on possible improvements are

given by the following examples for m = 3 and w=4.

Example 1. Ch(K) =2. Let G = At, the alternating group on four

symbols. Let V* be a four dimensional vector space over GF(2) and

let G permute a basis, {w, x, y, z}, in the natural manner. Let

V0= {O, w+x+y+z} and let V= V*/Vo. The image of w in V has

four conjugates under G and the image of w+x has three conjugates.

The sum of these elements has four conjugates.

Example 2. Ch(K) =3. Let V be a four dimensional vector-space

over K = GF(3), with basis {w, x, y, z}. Let G be the group generated

by the elements p, a, tEGL(V) whose matrices are

"i   i  o  o~i ri    o    o    on ri  o  o  o-

0100 0-100 0100

0   0   1   0   ' 0110' 0   0   0   1   '

_0   0   0    lj |_0      1      0      lj |_o   0    1    0_

Then G is the direct product of the subgroups (p, a) of order 6 and

(t) of order 2. The orbit of w under G is {w, w+x, w—x} and the

orbit of y under G is {y, y+x, z, z+x}. However, the orbit of w+y

is {w+y, w+y+x, w+y — x, w+z, w+z+x, w+z — x}, which has

six elements.
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