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Abstract. In a recent paper J. Kato and A. Strauss character-

ized the global existence of solutions of an ordinary differential

equation in terms of Liapunov functions in which they assumed

the right hand side of the differential equation is locally Lipschitz.

In the present paper a characterization of global existence of an

ordinary differential equation is found in which the right hand side

is merely continuous. The construction of the Liapunov functions

depend heavily upon the properties of solution funnels due to the

nonuniqueness of solutions.

1. Introduction. In most of the theory dealing with the construction

of Liapunov functions for the ordinary differential equation

(E) x = f(t, x),

one assumes that / is locally Lipschitz in order to obtain a locally

Lipschitz Liapunov function. In this paper we consider (E) under the

assumption that f:RXR"—>R" is merely continuous and provide

necessary and sufficient conditions for the global existence of solutions

of (E) in terms of Liapunov functions which depend upon solution

funnels. Kato and Strauss [l] have considered this problem assuming

/is locally Lipschitz. Their results, as we shall show in an example, do

not hold when/ is continuous even if we do not require the Liapunov

function to be continuous.

2. Preliminaries. Let Rn denote Euclidean w-space. | | will denote

the Euclidean norm. For x, yGF" define d(x, y) = |x—y|. For a set

SERn, Syi0 define

d(x,S) =inl{d(x, y) | yES}.

Let F be another subset of Fn, Ty±0. Then we define

d(T,S) = inf {d(x, S) \ x E T}.

Denote a solution of (E) through the point (to, x0) by x(-, t0, x0). A

solution through (to, Xo) exists in the future if x(t, to, x0) exists for all
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t>tQ and exists in the past if x(t, t0, xB) exists for all t<t0. A solution

exists forever if it exists in the past and in the future.

For (to, x0)ERXRn define the positive and negative solution

funnels as

#h*» = {(*> *(0):< = ^, x(t0) = xo} E R"+1

and

Fl.*o =  {(<> <0)--l S to, x(to) = Xo} C Rn+1

respectively, where x(t) =f(t, x{)). The solution funnel through

(/o, Xo), denoted by Fto,Xt, is defined as

We shall use the notation Ft(1,Xl)[a, b] to denote the restriction of the

solution funnel to the ^-interval [a, b]. The r-cross-section, denoted

by Fto,ioir), is the subset of Rn formed by the intersection of Fta,Xa

and the hyperplane t = r; that is,

Fto^ir)  = Fh,x<ir\({r}  XR»).

If A is any set in R" then we can define the solution funnel through

/oX^4 restricted to any interval [a, b] as

Fh,A[a,b] =   U  Fk,p[a,b]
pGA

and the r-cross-section of the funnel by

Fh.Air) =   U   F„„(t).
peA

We shall need the following known results dealing with solution

funnels.

Lemma 1 [2]. If A is a compact set and if all solutions through

toXA exist on the interval [to, t] then Ft„,A[to, t] and F(o,4(t) are both

compact.

Let p denote the Hausdorff metric on the class X of all nonempty

compact sets of Rn.

Lemma 2 [2]. Consider the funnel of solutions of (E) through the

point it0, Xo) =p. Suppose all solutions through p exist forever. Then the

mapping Fp, where FPit) is the t-cross-section of the solution funnel

through p, has the property that FP:R-^X is continuous in the Hausdorff

metric topology.
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Lemma 3 [3]. Let f be a continuous mapping on an open set DER

XRn. Let (t0, £o)GT> and suppose all solutions of (E) through (t0, £0)

exist on [a, b], r0E [a, b]. Then for each e>0, there exists a 8(«)>0,

such that if d((r, £), (t0, £0)) <S, then for each solution x(-, r, £) of (E),

there exists a solution x(-, t0, £0) of (E) through (r0, £0) smc& ^0^

1*0. t. £)~x(t, To, £o)| <efor all tE[a, b].

3. Results. As mentioned before Kato and Strauss [l] provided

necessary and sufficient conditions for the existence of solutions of

(E) on [t0, 00) in terms of Liapunov functions assuming / is locally

Lipschitz. In the next theorem we only assume / is continuous and

construct a Liapunov function similar to Yoshizawa's [4].

Theorem I. All solutions of (E) exist in the future if and only if

there exists a function V:RXRn—*R such that

(a) V(t, x)—>=» as I x| —»» uniformly for t in compact sets, and

(b) V(t, x(t)) is a nonincreasing function of tfor all solutions x(t).

Proof. Suppose there exists a function V(t, x) satisfying (a) and (b)

and not all solutions of (E) exist in the future. Then there exists a

point (t0, Xo) and a solution x(-, to, x0) such that \x(t, to, x0)|—>=°

as /—>F< 00. Consider the interval [/0, T]. By (a),

V(t, x(t, to, Xo)) —* °°        as / —» T,

and by (b) V(t0, x0)^ V(t, x(t, tB, x0)). Hence, V(to, x0) is unbounded,

a contradiction.

Conversely, we define

V(t, x) = inf( j x(t, t,x)\)    for all   x(-) E FTy,       tE [0, /] H /*,
T

= sup( I x(t, t, x) I )    for all   x(-)EFt,x;       rG[l,0),
T

where 7* is the largest interval to the left of / on which x(r, t, x) is

defined for t>0.

For any solution x(t), consider   the expression   V(t+h, x(t+h))

- V(t, x) where h>0. By the definition of V we have V(t+h, x(t+h))

^V(t, x); that is V(t, x(t)) is a nonincreasing function in t, thus

satisfying (b).

Assume V does not satisfy (a). Then there exist M and F>0 and

sequences   {/„},   {xn}   such that  | V(tn, x„)| ^M as  |x„|—>oo  and

— T^tn^T. Since t^O implies V(t, x)^|x| we must have tn>0 for

sufficiently large n. By the definition of V, there exists a sequence of
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points. |t„} such that T„Stn and a sequence of solutions {yn{ ,tn,xn)}

such that

\yn(rn, tn, xn)\  ^ 2M   for 0 ^ r» ^ i».

Since {/n}, {t„}, and {|y7i(r„, tn, xn)\ } lie in compact sets, we can

assume without loss of generality that

tn —> t0,    Tn —> to,    and    y„(r„, <», xn) —> y0        as » —> =o .

We consider the solution funnel FTOil/0 and denote FTo,Vo by F. There

exists 6>0 such that all solutions exist on [r0 — 5, <»), and for large

n we have /„2iT„>To —S. By an application of Lemma 3 we have that

for each e>0 there exists N(e) such that

d(yn(s, Tn, y»(Tn,  t„,  Xn)), F(j))   <   €

for sE [to — 8, 2T] and «^iV(e). In particular if we set s = tn we have

(3.1) <*(*,, FiQ) < e,       » ^ 2V(<0-

Using the properties of the Hausdorff metric we obtain

(3.2) dixn, Fito)) g dix„, FiQ) + piFiL), F(/0)).

Using Lemma 2, we have for n sufficiently large that p(F(£„), F(£0))<e.

Then using (3.1) and (3.2) we obtain for n sufficiently large

i3.3) d(xn, Fito)) ^ 2e.

However, by Lemma 1, F(/0) is compact; and with (3.3), we have

that {xn} is bounded, a contradiction.

Corollary 1. All solutions of (E) exist in the past if and only if

there exists a function V:RXRn-+R such that V satisfies condition ia)

and

(b1) V{t, xit))        is a nondecreasing function of t.

Proof. The sufficiency follows from a contradiction similar to that

in Theorem 1.

For the necessity, we define

V(t, x) =  sun (| x{r, t,x)\)    for all    x{) E F~t,x,       iit>0,

=   inf   (| x(r, l,x)\)    for all    x{) E F^x,       if t g 0.

Once again using techniques similar to those in Theorem 1 we can

verify that V satisfies (a) and (b1)-
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In view of Theorem 1 and Corollary 1, a reasonable conjecture

concerning the global existence of solutions of (E) would be that all

solutions of (E) exist forever if and only if there exists a function V

satisfying (a) and in addition V is constant along all solutions. This

conjecture is true when solutions are unique (Kato and Strauss

[l]). The following example, however, shows that this may not be

true when solutions are not unique.

Consider the scalar equation

x = (x — n)ll2(n + 1 — x)112        n < x < n + 1

(S) ~     ~
= 0 x < 0,

where n = 0, 1, ■ • • . All solutions of (S) exist forever. We shall sup-

pose that there exists a function V which is constant along solutions

and show that V cannot satisfy condition (a). Consider the point

/ = 0, x=l; we shall show F(0, 1) = F(0, n) for all n. Through the

point (0, 1) there exists a solution x(-, 0, 1) and apointr(w) such that

x(r(«), 0, 1) =n. Hence V(r(n), n) = V(0, 1). Since x = n is a solution

we have F(0, n) = V(0, 1). Hence Fdoes not satisfy (a).

By imposing a growth condition on V along solutions we arrive at

the following theorem concerning the global existence of solutions.

Theorem 2. All solutions of (E) exist forever if and only if there

exists a function V:RXRn—>R such that V satisfies (a) and in addition

for every point p = (t0, x0) GF XF" and for all solutions x(-)EFPwe have

(c) V(t, x(t, to, xo)) ^ rp(t)

where rp:R—*R, satisfies rp(t0) = V(t0, x0), and is bounded above for t in

compact sets of R.

Proof. Suppose there exists a function V(t, x) satisfying (a) and

(c). Assume there exists a point q = (h, Xi) and a solution x(-, tu Xi)

such that x(-, ti, Xi) does not exist forever. Then there either exists an

a such that ti<a< oo and

(3.4) | x(t, ti, xi) | —* oo        as / —> or,

or there exists a 8 such that — oo <8<ti and

(3.5) | x(t, ti, xi) | —> oo        &st—>(3+.

Using (3.4) and (a) we have for tE [h, a]

(3.6) V(t, x(t, ti, Xi)) —> co as t —» a~.

By (c), rq(t)>, V(t, x(t, tu Xi)) and rq(t) is bounded on [tu a], a con-
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tradiction to (3.6). A similar contradiction holds if (3.5) is satisfied.

Conversely, we define

V{t, x) =   sup  (| x{r, I, x) | )    for all    x(-) E F~t,x,        if / > 0,

=   sup (| x(t, t, x) | )    for all    x{) E Ft,x,       if / ^ 0.

Since all solutions exist forever, we have as a consequence of Lemma

1 that V is well defined. Morever Vit, x) ^ | x| ; hence, V satisfies (a).

Given any point p = ito, Xo) we now construct rPit). First let t0^0.

Then for 0^t^t0, define rp(t) = V(t0, x0). For t<0, we consider the

set A = Fp(t) and the set FtiA[t, 0]. Since Ft,A[t, 0] is compact from

Lemma 1, we have that the sup(£Tao(| F(,^(r)|) is finite. Define

rp(l) =   sup  ( | Ft,A(r) | ) for / < 0.
«SrgO

Finally for t^t0 define

rp(t) =   sup (\Ft,A(r)\),

where again A = Fp(t).

Now let t0<0. In a similar manner we define

rp(t) = V(t0, xo)    for    tQ g t ^ 0,

=   sup  (\Ft.A(T)\),    for    t >0,
OSrSl

=   sup  (|F,,a(t)|),    for    I < to,
lgr<0

where once again A = Fp(t)t

By the definitions of rp(t) and V(t, x) we have that for any point

p = (to,x0), V(t,x(t, to, xo)) ^rp(t) ior all tER and all x{)EFt0,Xo. We

also notice that for t0^0, rp(t) is a nondecreasing function on [to, °°),

constant on [0, t0], and nonincreasing on (—°°, 0]. Similarly, for

to^O, we have rPit) is nondecreasing on [0, oo), constant on [to, 0]

and nonincreasing on (— °°, to]. For any compact set KER there

exists a F>0 such that KE [-T, T]. For tE [~T, T] we have by

the above comments that

rPit) g max(rj,(F), rPi~T)).

Hence rPit) is bounded on K and therefore we have that condition

(c) is satisfied which completes the proof.

Remark. We can in fact show that rPit) is continuous by applying

Lemmas 2 and 3.
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