THE CONNECTION BETWEEN P-FRACTIONS AND ASSOCIATED FRACTIONS

ARNE MAGNUS ${ }^{1}$

Abstract. The associated continued fractions of a power series L is a special case of the P-fraction of a power series L^{*}. The latter is closely connected with the Padé table of L^{*}. We prove that every P-fraction is the limit of the appropriate contraction of associated fractions in the sense that as the coefficients of L approach those of L^{*} the elements and approximants of the contraction approach the elements and approximants of the P-fraction.

Introduction and notation. There is a one-one correspondence between all infinite power series $L=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$, where

$$
\phi_{m}(L)=\phi_{m}=\left|\begin{array}{cccc}
c_{1} & c_{2} & \cdots & c_{m} \\
c_{2} & c_{3} & \cdots & c_{m+1} \\
\cdot & \cdot & \cdots & \cdots \\
c_{m} & c_{m+1} & \cdots & c_{2 m-1}
\end{array}\right| \neq 0, \quad m=1,2,3, \cdots,
$$

and all infinite associated continued fractions

$$
A=c_{0}+\frac{k_{1} x}{1+l_{1} x}-\frac{k_{2} x^{2}}{1+l_{2} x}-\cdots-\frac{k_{n} x^{2}}{1+l_{n} x}-\cdots,
$$

with nth approximant K_{n} / L_{n}, in the sense that the Taylor expansion of K_{n} / L_{n} agrees with L up to and including the term $c_{2 n} x^{2 n}$. See, for example [1, pp. 128-131]. Note that, by a simple equivalence transformation, A may be written as

$$
\begin{equation*}
A=c_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}}+\cdots, \tag{1}
\end{equation*}
$$

where $b_{n}=\alpha_{n} x^{-1}+\beta_{n}, \alpha_{n} \neq 0, n=1,2,3, \cdots$, is a polynomial of degree 1 in x^{-1}. The approximants K_{n} / L_{n} are the successive entries down the main diagonal $[n, n]$ of the Pade table of $L,[1, \mathrm{p} .260]$. A similar correspondence holds between finite or infinite series L representing rational functions and finite associated fractions.
P-fractions, introduced in [2], are continued fractions of the form
Received by the editors October 24, 1969.
AMS Subject Classifications. Primary 4012.
Key Words and Phrases. Continued fractions, associated continued fractions, P-fractions, Padé table.
${ }^{1}$ This research was sponsored by the National Science Foundation under Grant No. GP 9009.

$$
P=b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{n}}+\cdots,
$$

where $b_{n}, n=0,1,2, \cdots$, is a polynomial of degree $N_{n} \geqq 1$ in x^{-1}. They generalize the associated fractions which occur when $N_{n}=1$, $n=1,2,3, \cdots$, and $b_{0} \equiv c_{0}$. There is a one-one correspondence between all Laurent series

$$
\sum_{k=-N_{0}}^{\infty} d_{k} x^{k}=L^{*}
$$

with finite principal part and all P-fractions, in the sense that the nth approximant A_{n} / B_{n} of P agrees with L^{*} up to and including the term of degree $2 N_{1}+2 N_{2}+\cdots+2 N_{n}+N_{n+1}-1 . P$ is finite if and only if L^{*} represents a rational function. We assume here that $N_{0}=0$. Note that no restriction need be placed on the d_{n} 's to insure the existence of P. The degree N_{n} of b_{n} equals $M(n)-M(n-1)$, where $M(n)$ is the index of the nth nonzero $\phi_{m}^{*}=\phi_{m}\left(L^{*}\right)$ and $M(0)=0,[3, \mathrm{p} .216]$. If, in particular, $\phi_{m}^{*} \neq 0$ for all m, then $N_{n}=1, n=1,2,3, \cdots$, which is the case of the associated fraction.

We shall show that every P-fraction is the limit of the appropriate contractions of associated fractions as the c_{n} 's of L approach the d_{n} 's of L^{*}. Given $\epsilon>0$ and $L^{*}=d_{0}+d_{1} x+d_{2} x^{2}+\cdots$ then there exist $L=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$ so that

$$
\begin{align*}
\left|c_{n}-d_{n}\right|<\epsilon, \quad n=0,1,2, \cdots \quad \text { and } \quad \phi_{m} \neq 0, \tag{2}\\
m=1,2,3, \cdots .
\end{align*}
$$

That is, L^{*} can be approximated by a series L which has an associated fraction. The proof is by induction on m. Set $c_{0}=d_{0}$ and pick $\phi_{1}=c_{1} \neq 0$ so that $\left|c_{1}-d_{1}\right|<\epsilon$. Assume $c_{0}, c_{1}, \cdots, c_{2 n-1}$ have been found so that (2) is satisfied with $m \leqq n$. Observe that $\phi_{n+1}=\phi_{n} \cdot c_{2 n+1}$ $+\psi_{n}$, where ψ_{n} is independent of $c_{2 n+1}$. Set $c_{2 n}=d_{2 n}$ and then pick $c_{2 n+1}$ so that $\left|c_{2 n+1}-d_{2 n+1}\right|<\epsilon$ and $\phi_{n+1} \neq 0$, which clearly may be done since $\phi_{n} \neq 0$.

The theorem. Given $L^{*}=d_{0}+d_{1} x+d_{2} x^{2}+\cdots$, where

$$
\phi_{m}^{*}=\left|\begin{array}{l}
d_{1} \cdots d_{m} \\
d_{m} \cdots \dot{d}_{2 m-1}
\end{array}\right| \neq 0
$$

if and only if $m=M(n), n=1,2,3, \cdots, M(1)<M(2)<\cdots$. Let L be an approximant of L^{*} satisfying (2) with the associated fraction A, and let K be that contraction of A which has approximants $K_{M(n)} / L_{M(n)}$, $n=0,1,2, \cdots, M(0)=0$. Then P is the limit of K in the sense that as
$\epsilon \rightarrow 0, K_{M(n)} / L_{M(n)} \rightarrow A_{n} / B_{n}$, the nth approximant of P. By an equivalence transformation K may be written in such a form that its elements approach those of P.

Proof. We write A in the form (1) so that K_{n} and L_{n} are polynomials in x^{-1}, L_{n} of degree n exactly. By [1, p. 1]

$$
\begin{aligned}
D_{n} & =K_{M(n)} L_{M(n-1)}-K_{M(n-1)} L_{M(n)} \\
& =(-1)^{M(n-1)} L_{M(n)-M(n-1)-1, M(n-1)+1},
\end{aligned}
$$

is different from zero since the right-hand side is a polynomial in x^{-1} of degree $M(n)-M(n-1)-1$ exactly. This, in turn, insures the existence of the contraction

$$
K=t_{0}+\frac{s_{1}}{t_{1}}+\frac{s_{2}}{t_{2}}+\cdots
$$

of A with approximants $K_{M(n)} / L_{M(n)}, n=0,1,2, \cdots,[1, \mathrm{p} .12]$. The elements s_{n} and t_{n} of K are given by fractions whose denominators are the D_{n} 's, $[1, \mathrm{p} .11]$. We now set

$$
L_{m}=q_{0, m} x^{-m}+\cdots+q_{m-1, m} x^{-1}+q_{m, m}
$$

and use the fact that

$$
x^{m} L_{m} L-x^{m} K_{m}=\left(x^{2 m+1}\right)
$$

to find the following system of equations,

$$
\begin{aligned}
& q_{m, m} c_{1}+q_{m-1, m} c_{2}+\cdots+q_{1, m} c_{m}=-q_{0, m} c_{m+1} \\
& q_{m, m} c_{m}+q_{m-1, m} c_{m+1}+\cdots+q_{1, m} c_{2 m-1}=-q_{0, m} c_{2 m} .
\end{aligned}
$$

Solving for $q_{i, m}, i=1,2, \cdots, m$, we find

$$
q_{i, m}=\phi_{m}^{-1} q_{0, m} \left\lvert\, \begin{gathered}
c_{1} \\
c_{m}
\end{gathered} \cdots c_{c_{m+1}} \cdots c_{2 m} \cdots c_{m} .\right.
$$

where the column headed by c_{m+1} replaces that column (in ϕ_{m}) which is headed by c_{m+1-i}. It is easily seen that $q_{0, m}=\alpha_{1} \alpha_{2} \cdots \alpha_{m}$ is the quotient of products of the ϕ 's and that $\lim \phi_{m}=\phi_{m}^{*}$. When $m=M(n)$, $n=1,2,3, \cdots$ we divide K_{m} and L_{m} by $q_{0, m}$ and pass to the limit ($c_{n} \rightarrow d_{n}, n=1,2, \cdots$) and find $L_{m} / q_{0, m} \rightarrow Q_{m} \neq 0, K_{m} / q_{0, m} \rightarrow P_{m}$ and $x^{m} Q_{m} L^{*}-x^{m} P_{m}=\left(x^{2 m+1}\right)$. The degrees of the polynomials $x^{m} Q_{m}$ and $x^{m} P_{m}$ are less than or equal to $m=M(n)$. Thus $P_{M(n)} / Q_{M(n)}$ is the [$M(n), M(n)$] entry in the Padé table of L^{*} and is therefore the nth approximant of $P,[1$, Theorems $6,7, \mathrm{pp} .370-371]$. This proves that P is the limit of K.

If, in K, we multiply t_{n} by $\rho_{n}=q_{0, M(n-1)} / q_{0, M(n)}$ and s_{n} by $\rho_{n-1} \rho_{n}$ we obtain an equivalent fraction in which the new values of s_{n} and t_{n} have limits σ_{n} and τ_{n} respectively. These are therefore the elements of a continued fraction which is equivalent to P.

Bibliography

1. O. Perron, Die Lehre von den Kettenbrüchen, Dritte, verbesserte und erweiterte Aufl. Band II: Analytisch-funktionentheoretische Kettenbrüche, Teubner Verlagsgesellschaft, Stuttgart, 1957. MR 19, 25.
2. A. Magnus, Certain continued fractions associated with the Pade table, Math. Z. 78 (1962), 361-374. MR 27 \#272.
3. ——, Expansion of power series into P-fractions, Math. Z. 80 (1962), 209-216. MR 27 \#273.

Colorado State University, Fort Collins, Colorado 80521

