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Abstract. Let A be a 5*-algebra, A** its second conjugate

space and t the canonical embedding of A into A**. A** is a

B*-algebra under the Arens product. Our main result states that A

is a dual algebra if and only if ir(A) is a two-sided ideal of A**.

Gulick has shown that for a commutative A, k(A) is an ideal if

and only if the carrier space of A is discrete. As this is equivalent

to A being a dual algebra, Gulick's result thus carries over to the

general 5*-algebra.

1. Introduction. Let 4 be a (complex) commutative P*-algebra

and let A be the set of all nonzero multiplicative linear functionals in

4*, the conjugate space of 4. Let 4' be the closed span of A in 4*

and let 4" = 4'*. Let it' be the embedding of 4 into A" given by

7r'(x) =7t(x)| A', the restriction of 7r(x) to A'. Birtel [2] has intro-

duced a product in A" under which A" is a commutative Banach

algebra. It follows that the multiplier algebra M(A) can be iso-

metrically embedded in A". We make use of A", A** and M(A) to

obtain several characterizations of duality for 4 which we gather

together in Theorem 4.2.

2. The multiplier algebra. Let 4 be a semisimple Banach algebra.

4 mapping T on A into itself is called a multiplier if (Tx)y=x(Ty)

for all x, yEA. It is easy to see that T is a bounded linear operator on

4 and that M(A), the set of all multipliers on 4, is a closed commuta-

tive subalgebra of the Banach algebra B(A) of all bounded linear

operators on 4 into itself under the usual operator bound norm. M(A)

is called the multiplier algebra of 4. It is easily shown that M(A)

is complete under its strong operator topology (i.e., the topology on

M(A) generated by the seminorms T—>||Px||, x£4). From now on

we shall call the strong operator topology on M(A) the strict topology

on M(A) [12]. All algebras and vector spaces under consideration are

over the complex field C.

Let 4 be a semisimple commutative Banach algebra. Then 4 can

be identified as an ideal of M(A). In what follows we shall always con-

sider 4 as a subalgebra of M(A). A is strictly dense in M(A) if and

only if 4 has an approximate identity (see [12]). Let fi be the carrier

Received by the editors September 29, 1969.

A MS Subject Classifications. Primary 4650; Secondary 4655.

Key Words and Phrases. Dual B "-algebra, Arens product, 5*(<»)-sum, multiplier

algebra, strict topology, carrier space, compact operators.

529



530 B. J. TOMIUK AND PAK-KEN WONG [July

space of A and A the function algebra on 12 isomorphic to A in the

Gelfand theory. Then M(A) can be identified with the set of all

complex-valued functions/onQ such thatfAEA. The functions/are

continuous and if T is the multiplier corresponding to / then the

sup norm ||/||m = ||F||  [12, Theorem 3.1].

Lemma 2.1. Let A be a semisimple commutative Banach algebra with

an approximate identity and let I be an ideal of A. Then I is dense in A

if and only if it is strictly dense in M(A).

Proof. Since A has an approximate identity, A is isometrically

isomorphic to a subalgebra of M(A). Let cl(7) and cl„(7) denote the

norm closure and strict closure of I in M(A), respectively. Suppose

cl(7) =A. Since the norm topology is finer than the strict topology on

M(A), we have A = cl(7)Ccl,(7). Since A has an approximate

identity, c\,(A) = M(A). Hence c\,(I)=M(A). Conversely suppose

cl,(7) = M(A). Let xEA and let {x^} be a net in 7 converging to x

in the strict topology. Then lim^||x^ea — xea|| =0, for each ea. Since

xpeaEI, we have xe«Gcl(7). Therefore xGcl(7) and so cl(7) =A.

3. The algebras A** and A". Let A he a 5*-algebra. It is well

known that the two Arens products defined in A** coincide [4,

Theorem 7.1]. For completeness we sketch the construction of one of

the Arens products in .4** which we shall use throughout. We do

this in stages as follows. (See [l], [4], [6].) Let x, yG^4,/G^4*, F,

GEA**.
(i)  Define/ * x by (f * x)y=f(xy).f * xEA*.
(ii) Define G */ by (G *f)x = G(f * x). G *fEA*.
(iii)  Define F * G by (F * G)f = F(G */). F * G EA**.
A** is a7>*-algebra under this product [4, Theorem 7.1] and, when

A is embedded canonically in A **, it agrees with the given product on

A [I].
Now let A be a commutative 7>*-algebra. Following Birtel [2] we

define a product on A" given in stages as follows. Let xGi,/,6A, F,

GEA", aiEC. (All sums are finite.)

(1) Let (zZaJ<) ° x= lZa4'(x)f'-
(2) Let Fo(JZ<Xifi)=Y,cxiF(fi)fi.
(3) Let Fo G be given by Fo G( ][>,/;) = 5Z"iF(fi)G(fi).

F o G is clearly a continuous linear functional on the span of A and

therefore can be uniquely extended to a linear functional on all of A'.

We denote this extension by the same symbol F o G. The multiplica-

tion thus defined on A" is commutative and ||Fo G|| ^||f|| ||g|| and

tt' is an isomorphism of A into A", taking the product xy into

7r'(x) OTr'(y).
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4. Duality in a commutative P*-algebra. Let 4 be a commutative

S*-algebra with carrier space fi. Since 4 has a bounded approximate

identity and is a supremum norm algebra, M(A) can be isometrically

embedded in A" [2], [12]. We shall assume in what follows that

M(A)CA".

Lemma 4.1. Let<f> be an element o/fi and let$ be a subset o/fi such that

$£<i>. Let M be the closed subspace of A' spanned by the elements of$.

Thencp^M.

Proof. Suppose <f>EM. Then there exists 4>iE$ and atEC (4 = 1,

2, ■ ■ ■ , n) such that

(#) *-E«* <i-

Since fi is a locally compact Hausdorff space, there is a relatively com-

pact open neighborhood Ui of <p such that 0,-C}: Ui (i = 1, 2, • • • , n).

Moreover, there is a compact neighborhood Vi of </> with F,-C Ui

(4 = 1, 2, • • • , w). Since 4 = Co(fi), the algebra of all continuous

complex-valued functions on fi vanishing at infinity, by [8, Theorem

3E], there exists an x<£4 such that O^x.-^l, x;=l on Vi and

x, = 0 on the complement of [/,• (4 = 1, 2, • • ■ , n). Then <bixi) = 1 and

d>iixi) = 0 (4=1, • ■ • , n). Since ||xi • • • x„\\ ^1 and <piixi ■ • ■ xn) =0

(4 = 1, • • •, n), by (#) we have that \<p{xi • • -x„)| <1. But

4>ixi ■ • •x„)=(bixi) • • ■<pix„) = l; a contradiction. Hence 0£Af,

and the proof is complete.

Let 4 be a semisimple commutative Banach algebra with carrier

space fi. A function / on fi is said to belong locally to 4 at ££fi if

there exists a neighborhood V of p and a function x£4 such that

f\ V=x\ V, where/| V and x| V denote the restrictions of/ and x to

V.
Let 4 be a commutative P*-algebra and let Pi(«>) be the set of

x£4 such that x has a compact support. Since 4 is also strongly semi-

simple, by [11, Theorem (2.7.25)] and [5, Theoreme (2.9.5) (iii)],

we have cl(/x(co)) =4; i.e., 4 isTauberian.

For any set S in a Banach algebra 4, let Si and Sr denote the left

and right annihilators of S in 4, respectively. 4 is called an anni-

hilator algebra if, for every closed left ideal J and for every closed

right ideal P, we have Jr= (0) if and only if J = A and Pj = (0) if and

only if P = 4. 4 is called a dual algebra if Jri = J and Rir — R for all

closed left ideals J and all closed right ideals P.

Let H be a Hilbert space and P(i?) the algebra of all continuous

linear operators on H into itself with the usual operator bound norm.



532 B. J. TOMIUK AND PAK-KEN WONG [July

Let LC(H) be the subalgebra of L(H) consisting of all compact oper-

ators on 77 and rc(H) the subalgebra of 7,(77) consisting of all trace

class operators on 77. We are now ready to prove the following

theorem.

Theorem 4.2. For a commutative B*-algebra A, the following state-

ments are equivalent:

(1) A is a dual algebra.

(2) 12 is discrete.

(3) M(A)=A".
(4) For each FEA", Fbelongs locally to A at each point of 12.

(5) it'(A) is an ideal of A".

(6) it (A) is an ideal of A**.

(7) The socle of A is strictly dense in M(A).

Proof. (1)=>(2). Suppose (1) holds. Let 0G12 and let

M = {aEA:<p(a) =0}. Then Mis a maximal modular ideal of A and,

since A is an annihilator algebra, by [3, Theorem l], M

= {x— ex'.xEA}, where e is a minimal idempotent of A. Clearly e

is selfadjoint and 0(e) = 1. It is easy to see that 0'(e)=O for all

0'G12, 0'?£0- Thus e is the characteristic function of the set {0} and

since e is continuous in the weak topology of 12, it follows that {0}

is open. Hence 12 is discrete.

(2)=>(1). Suppose (2) holds. Let il7be a maximal modular ideal of

A and let 0 be the element of 12 corresponding to M. Since 12 is dis-

crete, the characteristic function of the set {0} is continuous and

hence is the image of an element eG^4 by the Gelfand mapping. It is

straightforward to show that M= {x —ex:xG^4}- As e is an idem-

potent, we have Af;^(0). But, by [5, Theoreme (2.9.5) (iii)], each

closed ideal of A is the intersection of maximal modular ideals con-

taining it. Hence A is an annihilator algebra and therefore dual by

[3, Corollary, Theorem 3\.

(1)=>(6). Suppose A is dual. (In the argument that follows we may

take A to be any dual 23*-algebra.) Then, by [7, Lemma 2.3], there

exists a family of Hilbert spaces {H\} and A is isometrically

*-isomorphic to (YlTC(H\))0, the.B*(°o)-sumof {LC(H\)}. It is easy

to verify that A* is isometrically isomorphic to (2Ztc(H\))i, the

Fi- direct sum of (tc(77x) }, and that in turn A** is isometrically iso-

morphic to the normed full direct sum ^ZL(Hx) of (L(77x)}. Clearly

(^ZLC(H\))o is a closed (two-sided) ideal of ^ZL(H),). But the Arens

product and the given product coincide on ]CF(77x) since they

coincide on each 7,(77x) [ll, p. 289]. Hence ir(A) is a closed (two-

sided) ideal of A**.
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(6)=>(5). Suppose (6) holds. Let P£4" and let fj be an isometric

extension of P to all of A*. Since 7r(x) * JF£7r(4) and

(x'(x) oF)\ n = (x(x) *?r) | n,

(7r'(x) o P)|fi is a continuous function on fi vanishing at infinity.

Hence tt'(x) o P£tt'(4).

(5)=>(2). Suppose (5) holds and let U be a compact subset of fi.

We claim that U is finite. Suppose this is not so. Let {<by} be a net in

U converging to an element <b and such that 4>y?±<b for all y. Let M

be the closed subspace of A' spanned by the<b7. By Lemma 4.1, <££AT

and so there exists an FEA" such that P(Af) = (0) and P(0)^O.

Let x£4 be such that </>(x)^0. Since 4>yEM, Pott'(x)(^>y)

= Fi<by)<byix) =0. But P o v'ix)i<p) = F{p)<pix) ̂ 0. Hence, since </>7-*£

in the topology of fi, it follows that Po 7r'(x) is not continuous at <b

and so Po ^•'(x)^7r'(4), which contradicts the assumption that

7r'(4) is an ideal of A". Hence [7 is finite and consequently fi is

discrete.

(2)=>(3). This follows from [2, Theorem, p. 817].

(3)=K4). This is [2, Lemma l].

(4)=>(3). Suppose (4) holds. Since 4 is Tauberian, cl(x4)

= cl(xPA(°o)) for all x£4 and, since 4 has an approximate identity,

x£cl(xPi(°o)). Hence, by [2, Lemma 3], A"EMiA) and therefore,

since M(A)EA", M(A) =A".

(3)=*(5). Since 4 is an ideal of M(A), so if M(A)=A" then
7r'(4) is an ideal of A".

(1)<=>(7). This follows from Lemma 2.1 and the fact that a P*-alge-

bra is dual if and only if it has a dense socle [7].

5. Duality in a general P*-algebra.

Theorem 5.1. Let A be a B*-algebra and tt the canonical mapping of

A into A**. Then the following statements are equivalent:

ia) A is a dual algebra.

(b) 7r(4) is a closed two-sided ideal of A**.

Proof. (a)=*(b). This is given in the proof of (1)=>(6) of Theorem

4.2.

(b)=>(a). Suppose (b) holds. Let B be a maximal commutative

*-subalgebra of 4 and 7Ti the canonical mapping of B into B**. For

each/£4*, let/B=/|P, the restriction of / to B; clearly fBEB*.

For each FEB**, let / be the linear functional on 4 * defined by

Fif) = FifB)       if E A*).
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Then FG^4** and it is easy to show that F—>F is an isometric iso-

morphism of 75** into A**. Let xEB. Since

rZ*)V) = ti(*)(/b) = Jb(x) = *(*)(/)        (/ G A*),

we have iri(x) =ir(x), for all x£5, so that F^F maps tti(B) onto

x(5).

We shall now show that 7r(x) * FEir(B) for all xG7> and FEB**.

Let yG7>. Then, for all/G^4*, we have

((t(x) * F) * ir(y))(f) = t(x)(F * (Tt(y) */))

= F((x(y) */) * x) = F((ir(y) •/•*)«).

Similarly, for all /G^*,

(x(y) * (ir(x) * F))(/) = F((/ * y * x)B).

But

(?r(y) */ * x)B = (/ * y * x)B\

in fact, for all zEB, we have

(ir(y) *f*x)B(z) = f(xzy) = f(yxz) = (f * y * x)(z)

= (f * y * x)(z) = (f * y * x)B(z).

Hence

(ir(x) * P) * w(y) = w(y) * (ir(x) * F) (x, y E B, F E B**).

Since ir(B) is a maximal commutative *-subalgebra of t(A) and since

tt(x) * FEtt(A) (by hypothesis), we have 7r(x) * FE'f(B). Now

ic(x) * F = vi(x) * F = (iri(x) * F)~

and hence 7Ti(x) * FEtti(B), which shows that iri(B) is an ideal of

73**. Thus B is dual by Theorem 4.2. Since this is true for every

maximal commutative *-subalgebra B of A, [10, Theorem l] shows

that A is a dual algebra.
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