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Abstract. In this note we obtain an extension of Hartogs'

theorem on analytic continuation inside a bounded domain in C"

which requires no assumption on the smoothness of the boundary.

The standard proof of Hartogs' theorem applies with the minor

change of using a Whitney function as the boundary data.

Let fi be a bounded domain in C", »> 1, whose complement is con-

nected. According to Hartogs' theorem, if dfi is a surface of class C2

and if w£C2(dfi) satisfies the tangential Cauchy-Riemann equations

on dfi, then u is the restriction to dfi of a function UEC1^) analytic

inside fi. In this note we observe that the smoothness condition

dfi£C2 may be discarded in favor of the very mild hypothesis that

fi equals the interior of its closure, providing the boundary data are

taken to be a Whitney function of class C2 which satisfies all the

Cauchy-Riemann equations on dfi. We remark that an ordinary func-

tion u which satisfies the tangential Cauchy-Riemann equations on a

smooth surface 5 may be assigned a normal derivative to form a

Whitney function on 5 which satisfies all the Cauchy-Riemann

equations.

We follow closely the proof of Hartogs' theorem in §2.3 of Hor-

mander [l]. If K is a compact set in C", let &miK) be the space of

(complex-valued) Whitney functions on K of class Cm. (Chapter I of

Malgrange [2] contains a concise introduction to Whitney functions.)

We use the notation V = (d/dzi, • • • , d/dzu • • • ) for the gradient

operator.

Theorem. Let fi be a bounded domain in Cn, n>l, such that

fi = Int(fi) and fi'=C"'~fi is connected. If w£S2(dfi) and if du

= V(dw) = 0, then u may be extended to a function f/GS^fi) analytic in fi.

Proof. By the Whitney extension theorem, there is a function

vEC2iCn) which is an extension of u. Define a differential form of

type (0, 1),
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f = dv in fl,       /=0onC»~Q.

Then/G Cl(Cn), 3/ = 0, and/has compact support. By Theorem 2.3.1

of Hormander, there is a function wECl(Cn) such that dw=f. We

note that d&' =dU, because Q = Int(O); it follows by unique continua-

tion that w\dQ = 0. Of course the function U = v—w provides the

desired analytic continuation of u.
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