AN EXTENSION OF HARTOGS' THEOREM FOR DOMAINS WHOSE BOUNDARY IS NOT SMOOTH

DAVID G. SCHAEFFER1

ABSTRACT. In this note we obtain an extension of Hartogs' theorem on analytic continuation inside a bounded domain in C^n which requires no assumption on the smoothness of the boundary. The standard proof of Hartogs' theorem applies with the minor change of using a Whitney function as the boundary data.

Let Ω be a bounded domain in \mathbb{C}^n , n>1, whose complement is connected. According to Hartogs' theorem, if $\partial\Omega$ is a surface of class C^2 and if $u\in C^2(\partial\Omega)$ satisfies the tangential Cauchy-Riemann equations on $\partial\Omega$, then u is the restriction to $\partial\Omega$ of a function $U\in C^1(\bar{\Omega})$ analytic inside Ω . In this note we observe that the smoothness condition $\partial\Omega\subseteq C^2$ may be discarded in favor of the very mild hypothesis that Ω equals the interior of its closure, providing the boundary data are taken to be a Whitney function of class C^2 which satisfies all the Cauchy-Riemann equations on $\partial\Omega$. We remark that an ordinary function u which satisfies the tangential Cauchy-Riemann equations on a smooth surface S may be assigned a normal derivative to form a Whitney function on S which satisfies all the Cauchy-Riemann equations.

We follow closely the proof of Hartogs' theorem in §2.3 of Hörmander [1]. If K is a compact set in \mathbb{C}^n , let $\mathcal{E}^m(K)$ be the space of (complex-valued) Whitney functions on K of class \mathbb{C}^m . (Chapter I of Malgrange [2] contains a concise introduction to Whitney functions.) We use the notation $\nabla = (\partial/\partial z_1, \cdots, \partial/\partial \bar{z}_1, \cdots)$ for the gradient operator.

THEOREM. Let Ω be a bounded domain in \mathbb{C}^n , n>1, such that $\Omega = \operatorname{Int}(\overline{\Omega})$ and $\Omega' = \mathbb{C}^n \sim \overline{\Omega}$ is connected. If $u \in \mathbb{E}^2(\partial \Omega)$ and if $\overline{\partial} u = \nabla(\overline{\partial} u) = 0$, then u may be extended to a function $U \in \mathbb{E}^1(\overline{\Omega})$ analytic in Ω .

PROOF. By the Whitney extension theorem, there is a function $v \in C^2(\mathbb{C}^n)$ which is an extension of u. Define a differential form of type (0, 1),

Received by the editors July 18, 1969.

AMS Subject Classifications. Primary 3222.

Key Words and Phrases. Several complex variables, pseudo-convexity, Hartogs' Theorem, Whitney functions.

¹ This research was partially supported by the National Science Foundation under NSF Grant GP-6761.

$$f = \overline{\partial} v \text{ in } \Omega, \qquad f = 0 \text{ on } C^n \sim \Omega.$$

Then $f \in C^1(\mathbf{C}^n)$, $\bar{\partial} f = 0$, and f has compact support. By Theorem 2.3.1 of Hörmander, there is a function $w \in C^1_c(\mathbf{C}^n)$ such that $\bar{\partial} w = f$. We note that $\partial \Omega' = \partial \Omega$, because $\Omega = \operatorname{Int}(\bar{\Omega})$; it follows by unique continuation that $w \mid \partial \Omega = 0$. Of course the function U = v - w provides the desired analytic continuation of u.

It is a pleasure to acknowledge a stimulating conversation with Stephen Greenfield which led me to this problem, and I would like to thank Hugo Rossi for reading the paper before publication.

REFERENCES

- 1. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. MR 34 #2933.
- 2. B. Malgrange, *Ideals of differentiable functions*, Tata Institute of Fundamental Research, Bombay and Oxford Univ. Press, London, 1967. MR 35 #3446.

Brandeis University