ANALYTICITY AND CONTINUATION OF CERTAIN FUNCTIONS OF TWO COMPLEX VARIABLES¹

CARL H. FITZGERALD

ABSTRACT. This paper shows that the satisfaction of a certain quadratic relation is a sufficient condition that a continuous, symmetric function of two complex variables on a domain be analytic and be continuable to a particular larger domain. This quadratic relation is of the same type as that involved in the Grunsky inequalities.

In proving a generalization of the Grunsky inequalities, Bergman and Schiffer [3] announced a theorem on analytic continuation of a function of two complex variables. In extending the Grunsky inequalities in another way, Alenicyn [1] found this theorem on continuation useful. The purpose of this note is to strengthen the Bergman-Schiffer theorem to be more natural for both applications and to provide a proof that is more direct than the formal computation in the original proof.

Suppose $\mathfrak D$ and $\mathfrak G$ are bounded domains, and $\mathfrak G$ is contained in $\mathfrak D$. Let $\int \mathfrak D \cdot dA_z$ denote area integration as z ranges over $\mathfrak D$. Let $K\mathfrak D(z, \overline{\zeta})$ be the Bergman kernel function [2] for the domain $\mathfrak D$.

THEOREM. If $V(z, \zeta)$ is a symmetric, continuous, complex-valued function on $\mathfrak{G} \times \mathfrak{G}$, and

$$(1) \qquad \left| \int_{\mathfrak{S}} \int_{\mathfrak{S}} V(z,\zeta) \overline{\phi(z)} \ \overline{\phi(\zeta)} dA_{z} dA_{\zeta} \right| \leq \int_{\mathfrak{S}} \int_{\mathfrak{S}} K \mathfrak{D}(z,\overline{\zeta}) \ \overline{\phi(z)} \phi(\zeta) dA_{z} dA_{\zeta}$$

for all continuous, complex-valued function ϕ with compact support in G, then $V(z, \zeta)$ is analytic in $G \times G$ and can be continued onto $\mathfrak{D} \times \mathfrak{D}$.

PROOF. Let G be a subdomain of G such that the closure \overline{G} is contained in G. There exists a complete orthonormal system of analytic functions $\{\phi_n\}_{n=1}^{\infty}$ on \mathfrak{D} , which is also orthogonal on G, [2]. Let

$$k_n^2 = \int_G \phi_n(z) \overline{\phi_n(z)} dA_z$$
 for $n = 1, 2, \cdots$.

Received by the editors October 7, 1969.

AMS Subject Classifications. Primary 3028, 3086, 3235; Secondary 3009, 3042. Key Words and Phrases. Grunsky inequalities, Bergman kernel function, analytic continuation, two complex variables, doubly orthogonal functions.

¹ This work was supported in part by the Air Force Grant AFOSR-68-1514.

Then $\{\phi_n(z)/k_n\}_{n=1}^{\infty}$ is an orthonormal system on G, but is not necessarily a complete system.

Let α_{nm} be defined by

(2)
$$k_n k_m \mathfrak{A}_{nm} = \int_G \int_G V(z, \zeta) \overline{\phi_n(z)} \ \overline{\phi_m(\zeta)} dA_z dA_{\zeta}.$$

Since $V(z, \zeta)$ is continuous on $\overline{G} \times \overline{G}$, $\int_G \int_G |V(z, \zeta)|^2 dA_z dA_{\zeta} < \infty$. Then by the usual argument, [2]

$$\sum_{n,m=1}^{\infty} \alpha_{nm} \phi_n(z) \phi_m(\zeta)$$

converges uniformly on compact subsets of G. It is now shown that the series converges to $V(z,\zeta)$.

Suppose $\Gamma_1(z)$ is a continuous function on G, has $\int_G |\Gamma_1(z)|^2 dA_z < \infty$, and is orthogonal to ϕ_n on G for $n=1, 2, \cdots$. Let $\Gamma_2(z)$ be any continuous function on \overline{G} , and λ be a real number. By using the symmetry of $V(z, \zeta)$,

$$\begin{split} \left| \int_{G} \int_{G} V(z,\zeta) \left[\overline{\Gamma_{1}(z)} + \lambda \overline{\Gamma_{2}(z)} \right] \left[\overline{\Gamma_{1}(\zeta)} + \lambda \overline{\Gamma_{2}(\zeta)} \right] dA_{z} dA_{\zeta} \right| \\ &= \left| \int_{G} \int_{G} V(z,\zeta) \overline{\Gamma_{1}(z)} \ \overline{\Gamma_{1}(\zeta)} dA_{z} dA_{\zeta} \right| \\ &+ 2\lambda \int_{G} \int_{G} V(z,\zeta) \overline{\Gamma_{1}(z)} \ \overline{\Gamma_{2}(\zeta)} dA_{z} dA_{\zeta} \\ &+ \lambda^{2} \int_{G} \int_{G} V(z,\zeta) \overline{\Gamma_{2}(z)} \ \overline{\Gamma_{2}(\zeta)} dA_{z} dA_{\zeta} \end{split}$$

on the other hand, by (1) and the orthogonality of Γ_1 to ϕ_n on G

$$\leqq \lambda^2 \int_G \int_G K \mathfrak{D}(z,\overline{\zeta}) \overline{\Gamma_2(z)} \, \Gamma_2(\zeta) dA_z dA_{\zeta} \qquad \text{for all real λ.}$$

Thus

$$\int_{G} \int_{G} V(z,\zeta) \overline{\Gamma_{1}(z)} \ \overline{\Gamma_{1}(\zeta)} dA_{z} dA_{\zeta} = 0$$

and

(3)
$$\int_{G} \int_{G} V(z,\zeta) \overline{\Gamma_{1}(z)} \ \overline{\Gamma_{2}(\zeta)} dA_{z} dA_{\zeta} = 0.$$

Letting

$$\Gamma_2(\zeta) = \int_G V(z,\zeta) \overline{\Gamma_1(z)} dA_z,$$

by (3)

$$\int_{G} \left\{ \int_{G} V(z,\zeta) \overline{\Gamma_{1}(z)} \left[\int_{G} \overline{V(z,\zeta)} \overline{\Gamma_{1}(z)} dA_{z} \right] dA_{z} \right\} dA_{\zeta} = 0,$$

$$\int_{G} \left| \int_{G} V(z,\zeta) \overline{\Gamma_{1}(z)} dA_{z} \right|^{2} dA_{\zeta} = 0.$$

Hence

(4)
$$\int_{G} V(z,\zeta) \overline{\Gamma_{1}(z)} dA_{z} = 0 \quad \text{for all } \zeta \text{ in } G,$$

for all functions $\Gamma_1(z)$ that are continuous on G, have $\int_G |\Gamma_1(z)|^2 dA_z$ < ∞ and are orthogonal to $\phi_n(z)$ on G for $n=1, 2, \cdots$.

Let $\delta_k(z-z_0)$ be the *k*th continuous approximation to the delta function at z_0 such that $\delta_k(z-z_0)=0$ for all z in G with $|z-z_0|>1/k$. Then $\delta_k(z-z_0)$ can be expressed by

$$\Psi_k(z) + \sum_{n=1}^{\infty} b_n^{(k)} \phi_n(z)$$

for z in G, where $\Psi_k(z)$ is orthogonal to $\phi_n(z)$ for $n=1, 2, \cdots$, on G, has $\int_G |\Psi_k(z)|^2 dA_z < \infty$ and is continuous on G. By (4), the definition of \mathfrak{A}_{nm} ,

$$\int_{G} \int_{G} \left[V(z,\zeta) - \sum_{n,m=1}^{\infty} \alpha_{nm} \phi_{n}(z) \phi_{m}(\zeta) \right] \left[\Psi_{k}(z) + \sum_{n=1}^{\infty} b_{n}^{(k)} \phi_{n}(z) \right] \cdot \left[\Psi_{k}(\zeta) + \sum_{m=1}^{\infty} b_{m}^{(k)} \phi_{m}(\zeta) \right] dA_{z} dA_{\zeta} = 0.$$

If z_0 is in G, taking $\lim_{k\to\infty}$ yields

(5)
$$V(z_0, z_0) - \sum_{n,m=1}^{\infty} \alpha_{nm} \phi_n(z_0) \phi_m(z_0) = 0.$$

A similar computation using $\delta_k(z-z_0) + \delta_k(z-z_1)$ for the test function yields

$$V(z_0, z_0) - \sum_{n,m=1}^{\infty} \alpha_{nm} \phi_n(z_0) \phi_m(z_0) + V(z_0, z_1) - \sum_{n,m=1}^{\infty} \alpha_{nm} \phi_n(z_0) \phi_m(z_1)$$

$$+ V(z_1, z_0) - \sum_{n,m=1}^{\infty} \alpha_{nm} \phi_n(z_1) \phi_m(z_0) + V(z_1, z_1) - \sum_{n,m=1}^{\infty} \alpha_{nm} \phi_n(z_1) \phi_m(z_1) = 0.$$

1970]

By (5) and the symmetry of V and thus of α_{nm} ,

(6)
$$V(z,\zeta) = \sum_{n=-1}^{\infty} \alpha_{nm} \phi_n(z) \phi_m(\zeta) \quad \text{for all } z \text{ and } \zeta \text{ in } G.$$

Hence V is analytic on $G \times G$.

It is now shown that the series (6) converge for z and ζ in \mathfrak{D} .

Let $\theta_k(z) + \sum_{n=1}^{\infty} C_n^{(k)} \phi_n(z)$ be the representation of the kth continuous approximation to the delta function at z_0 where the representation holds for z in \mathfrak{D} , and $\theta_k(z)$ is orthogonal to $\phi_n(z)$ on \mathfrak{D} for n=1, $2, \cdots$.

$$\left| \int_{\mathfrak{D}} \int_{\mathfrak{D}} \left[\sum_{n,m=1}^{L} \alpha_{nm} \phi_{n}(z) \phi_{m}(\zeta) \right] \left[\theta_{k}(z) + \sum_{n=1}^{\infty} C_{n}^{(k)} \phi_{n}(z) \right] \right. \\ \left. \left[\theta_{k}(\zeta) + \sum_{m=1}^{\infty} C_{m}^{(k)} \phi_{n}(\zeta) \right] dA_{z} dA_{\zeta} \right|$$

$$= \left| \int_{\mathfrak{D}} \int_{\mathfrak{D}} \left[\sum_{n,m=1}^{L} \alpha_{nm} \phi_{n}(z) \phi_{m}(\zeta) \right] \left[\sum_{n=1}^{L} C_{n}^{(k)} \phi_{n}(z) \right] \right. \\ \left. \left[\sum_{m=1}^{L} C_{m}^{(k)} \phi_{m}(\zeta) \right] dA_{z} dA_{\zeta} \right|$$

$$= \left| \int_{G} \int_{G} \left[\sum_{n,m=1}^{L} \alpha_{nm} \phi_{n}(z) \phi_{m}(\zeta) \right] \left[\sum_{n=1}^{L} \frac{C_{n}^{(k)}}{k_{n}} \phi_{n}(z) \right] \right. \\ \left. \left[\sum_{m=1}^{L} \frac{C_{n}^{(k)}}{k_{m}} \phi_{m}(\zeta) \right] dA_{z} dA_{\zeta} \right|$$

$$= \left| \int_{G} \int_{G} V(z,\zeta) \left[\sum_{n=1}^{L} \frac{C_{n}^{(k)}}{k_{n}} \phi_{n}(z) \right] \left[\sum_{m=1}^{L} \frac{C_{n}^{(k)}}{k_{m}} \phi_{m}(\zeta) \right] dA_{z} dA_{\zeta} \right|$$

$$\leq \int_{G} \int_{G} K_{\mathfrak{D}}(z,\zeta) \left[\sum_{n=1}^{L} \frac{C_{n}^{(k)}}{k_{n}} \phi_{n}(z) \right] \left[\sum_{m=1}^{L} \frac{C_{m}^{(k)}}{k_{m}} \phi_{m}(\zeta) \right] dA_{z} dA_{\zeta}$$

$$\leq \int_{\mathfrak{D}} \int_{\mathfrak{D}} K_{\mathfrak{D}}(z,\zeta) \left[\overline{b_{k}(z) + \sum_{n=1}^{\infty} C_{n}^{(k)} \phi_{n}(z)} \right] \cdot \left[\theta_{k}(\zeta) + \sum_{m=1}^{\infty} C_{m}^{(k)} \phi_{m}(\zeta) \right] dA_{z} dA_{\zeta}$$

$$\cdot \left[\theta_{k}(\zeta) + \sum_{m=1}^{\infty} C_{m}^{(k)} \phi_{m}(\zeta) \right] dA_{z} dA_{\zeta}$$

taking the lim_{k→∞}

(7)
$$K\mathfrak{D}(z_0, \bar{z}_0) \geq \left| \sum_{n=-1}^{L} \mathfrak{A}_{nm} \phi_n(z_0) \phi_m(z_0) \right| \quad \text{for all } L.$$

A similar computation using a representation of an approximation of the delta function at z_0 plus the delta function at z_1 and utilizing (7) yields

$$K\mathfrak{D}(z_0,\overline{z_0}) + \operatorname{Re} K\mathfrak{D}(z_0,\overline{z_1}) + K\mathfrak{D}(z_1,\overline{z_1}) \geq \left| \sum_{n=-1}^{L} \mathfrak{A}_{nm}\phi_n(z_0)\phi_m(z_1) \right|.$$

Hence $\left\{\sum_{n,m=1}^{L} \alpha_{nm}\phi_{n}(z)\phi_{m}(\zeta)\right\}_{L=1}^{\infty}$ is a normal family on $\mathfrak{D} \times \mathfrak{D}$. Since it converges to $V(z,\zeta)$ on $G \times G$, $\sum_{n,m=1}^{\infty} \alpha_{nm}\phi_{n}(z)\phi_{m}(\zeta)$ must converge to an analytic function on $\mathfrak{D} \times \mathfrak{D}$ that is a continuation of $V(z,\zeta)$.

COROLLARY. If $V(z, \zeta)$ is a symmetric, continuous, complex-valued function on $\mathbb{S} \times \mathbb{S}$, and

$$\left|\sum_{n=1}^{L}\sum_{m=1}^{L}\alpha_{n}\alpha_{m}V(z_{n},z_{m})\right| \leq \sum_{n=1}^{L}\sum_{m=1}^{L}\alpha_{n}\bar{\alpha}_{m}K\mathfrak{D}(z_{n},\overline{z_{m}})$$

for all complex vectors $(\alpha_1, \alpha_2, \cdots)$, and (z_1, z_2, \cdots) with all z_n in G, then $V(z, \zeta)$ is analytic in $G \times G$ and can be continued onto $D \times D$.

REFERENCES

- 1. Ju. E. Alenicyn, Univalent functions without common values in a multiply connected domain, Trudy Mat. Inst. Steklov. 94 (1968), 4-18 = Proc. Steklov Inst. Math. 94 (1968), 1-18. MR 37 #1579.
- 2. S. Bergman, *The kernel function and conformal mapping*, Mathematical Surveys, no. 5, Amer. Math. Soc., Providence, R. I., 1950, pp. 1-18. MR 12, 402.
- 3. S. Bergman and M. Schiffer, Kernel functions and conformal mapping, Compositio Math. 8 (1952), 205-249. MR 12, 602.

University of California at San Diego, La Jolla, California 92038