OSCILLATION OF SOLUTIONS OF CERTAIN ORDINARY DIFFERENTIAL EQUATIONS OF *n*TH ORDER

GERALD H. RYDER AND DAVID V. V. WEND

ABSTRACT. Necessary and sufficient conditions are given that all solutions of $y^{(n)} + f(t, y) = 0$ which are continuable to infinity are oscillatory in the case n is even and are oscillatory or strongly monotone in the case n is odd. The results generalize to arbitrary n recent results of J. Macki and J. S. W. Wong for the case n = 2 and include as special cases results of I. Kiguradze, I. Ličko and M. Švec, and Š. Belohorec.

The equation considered in this paper is

(1)
$$y^{(n)} + f(t, y) = 0,$$

where f(t, y) is defined in $S = [0, \infty) \times (-\infty, \infty)$. Let F be the family of solutions of (1) which are indefinitely continuable to the right; i.e. if $y(t) \in F$, then there exists $t_0 \ge 0$ such that y(t) exists on $[t_0, \infty)$. A solution y(t) in F is said to be *nonoscillatory* if, for some T sufficiently large, y(t) is always positive or always negative for $t \ge T$; otherwise a solution in F is oscillatory.

The first theorem generalizes to arbitrary $n \ge 2$ a theorem of Macki and Wong [6, Theorem 1] for the second order equation y'' + f(t, y) = 0, giving necessary and sufficient conditions for solutions of (1) in F to be oscillatory. This theorem also generalizes results of Kiguradze [2, Theorem 5] and Ličko and Švec [4] for the respective special cases $y^{(n)} + yG(y^2, t) = 0$, G(u, t) nonnegative and nondecreasing in u, and $y^{(n)} + a(t)y^{\alpha} = 0$, $\alpha > 1$ and α the ratio of odd integers. The second theorem generalizes results of Ličko and Švec [4] and Belohorec [1] for the latter equation when $0 \le \alpha < 1$. It also has points of contact with results of Kiguradze [3].

Assume for equation (1) that

- (i) f(t, y) is continuous in S;
- (ii) $a(t)\phi(y) \le f(t, y)$ if y > 0 and $f(t, y) \le b(t)\psi(y)$ if y < 0, $(t, y) \in S$, where
- (iii) a(t) and b(t) are nonnegative and locally integrable on $[0, \infty)$ and neither a(t) nor b(t) is identically zero on any subinterval of $[0, \infty)$,

Received by the editors June 9, 1969.

AMS Subject Classifications. Primary 3442; Secondary 3440.

Key Words and Phrases. Oscillation of solutions, nonoscillation of solutions, nonlinear differential equations, strongly nonlinear differential equations.

(iv) $\phi(y)$ and $\psi(y)$ are nondecreasing, and $y\phi(y) > 0$ and $y\psi(y) > 0$ on $(-\infty, \infty)$ for $y \neq 0$, and

(v) for some $\alpha \ge 0$,

$$\int_{\alpha}^{\infty} \frac{du}{\phi(u)} < \infty \quad \text{and} \quad \int_{-\alpha}^{-\infty} \frac{du}{\psi(u)} < \infty.$$

Conditions (i) through (v) guarantee that equation (1) is strongly nonlinear [2].

THEOREM 1. If the function f(t, y) in (1) satisfies (i)-(v) and in addition

(2)
$$\int_0^\infty t^{n-1}a(t)dt = \int_0^\infty t^{n-1}b(t)dt = \infty,$$

then if n is even, each solution of (1) in F is oscillatory, while if n is odd, each solution in F is either oscillatory or it tends monotonically to zero together with all its first n-1 derivatives.

For convenience, before proving Theorem 1 the possible behavior of a nonoscillatory solution is summarized in the following two lemmas [2, Lemma 1], [5, pp. 410, 418-419], the proofs of which are elementary.

LEMMA 1. Suppose $f(t) \in C^k[a, \infty)$, $f(t) \ge 0$ and $f^{(k)}(t)$ is monotone. Then exactly one of the following is true:

- (i) $\lim_{t\to\infty} f^{(k)}(t) = 0$,
- (ii) $\lim_{t\to\infty} f^{(k)}(t) > 0$ and $f(t), \dots, f^{(k-1)}(t)$ tend to ∞ as $t\to\infty$.

LEMMA 2. If $y(t) \in C^n[a, \infty)$, $y(t) \ge 0$ and $y^{(n)}(t) \le 0$ on $[a, \infty)$, then exactly one of the following is true:

- (I) $y'(t), \dots, y^{(n-1)}(t)$ tend monotonically to zero as $t \to \infty$,
- (II) there is an odd integer k, $1 \le k \le n-1$, such that $\lim_{t\to\infty} y^{(n-j)}(t) = 0$ for $1 \le j \le k-1$, $\lim_{t\to\infty} y^{(n-k)}(t) \ge 0$, $\lim_{t\to\infty} y^{(n-k-1)}(t) > 0$ and $y(t), y'(t), \dots, y^{(n-k-2)}(t)$ tend to ∞ as $t\to\infty$.

Analogous statements can be made if $y(t) \le 0$ and $y^{(n)}(t) \ge 0$ on $[a, \infty)$.

PROOF OF THEOREM 1. Suppose y(t) is a nonoscillatory solution in F, say y(t) > 0 for $t \ge T \ge 0$. From (1),

(3)
$$y^{(n)}(t) = -f(t, y(t)) \le -a(t)\phi(y(t)).$$

By Lemma 1, $y^{(n-1)}(t)$ decreases to a nonnegative limit, so from (3),

(4)
$$y^{(n-1)}(s) \ge \int_{-\infty}^{\infty} a(u)\phi(y(u))du.$$

Suppose case I of Lemma 2 holds. Then an integration of (4) n-2 times from t to ∞ yields

(5)
$$(-1)^n y'(t) \ge \int_t^{\infty} \frac{(u-t)^{n-2}}{(n-2)!} a(u) \phi(y(u)) du.$$

If n is even, integrating (5) from T to $t \ge T$,

$$y(t) \ge \int_{T}^{t} \frac{(u-T)^{n-1}}{(n-1)!} a(u)\phi(y(u))du.$$

Since $\phi(u)$ is nondecreasing,

$$\phi(y(t)) / \phi \left[\int_T^t \frac{(u-T)^{n-1}}{(n-1)!} a(u) \phi(y(u)) du \right] \ge 1,$$

so, as in [6],

$$\int_{R}^{S} [\phi(v)]^{-1} dv \ge \int_{r}^{\bullet} \frac{(t-T)^{n-1}}{(n-1)!} a(t) dt,$$

where

$$R = \int_{\pi}^{r} \frac{(u - T)^{n-1}}{(n-1)!} a(u)\phi(y(u)) du$$

and

$$S = \int_{T}^{a} \frac{(u - T)^{n-1}}{(n-1)!} a(u)\phi(y(u))du.$$

If for some $r \ge T$, $R \ge \alpha$, then condition (v) gives a contradiction to condition (2), while if $R < \alpha$ for all $r \ge T$, then

$$\alpha > R \ge \phi(y(T)) \int_{T}^{r} \frac{(u-T)^{n-1}}{(n-1)!} a(u) du,$$

again in contradiction to condition (2).

If n is odd, then

(6)
$$-y'(t) \ge \int_{-\infty}^{\infty} \frac{(u-t)^{n-2}}{(n-2)!} a(u)\phi(y(u)) du \ge 0,$$

so y(t) decreases to a limit $L \ge 0$.

Suppose L>0. Then integrating (6) from T to ∞ ,

$$y(T) > y(T) - L \ge \int_{T}^{\infty} \frac{(u - T)^{n-1}}{(n-1)!} a(u)\phi(y)du$$
$$\ge \phi(L) \int_{T}^{\infty} \frac{(u - T)^{n-1}}{(n-1)!} a(u)du,$$

since $\phi(y)$ is nondecreasing in y. But this implies

$$\int_0^\infty t^{n-1}a(t)dt < \infty.$$

Suppose now that case II of Lemma 2 holds. Proceeding as in case I,

(7)
$$y^{(n-k)}(t) \ge \int_{t}^{\infty} \frac{(u-t)^{k-1}}{(k-1)!} a(u)\phi(y)du.$$

Since $y^{(j)}(t)$ increases to infinity, j < n-k-1, there exists $t_1 \ge T$ such that $y^{(j)}(t) > 0$ for $t \ge t_1$, $j = 0, \dots, n-k-1$. Integrating (7) from t_1 to $t > t_1$,

$$y^{(n-k+1)}(t) \ge \int_{t_1}^{t} \int_{s}^{\infty} \frac{(u-s)^{k-1}}{(k-1)!} a(u)\phi(y(u)) du ds$$

$$\ge \int_{s}^{\infty} \frac{(u-t_1)^k - (u-t)^k}{s!} a(u)\phi(y) du,$$

so

(8)
$$y^{(n-k+1)}(t) > \int_{1}^{\infty} \frac{(t-t_1)^k}{k!} a(u)\phi(y)du.$$

Integrating (8) from t_1 to t,

$$y^{(n-k+2)}(t) > \int_{t}^{\infty} \frac{(t-t_1)^{k+1}}{(k+1)!} a(u)\phi(y)du.$$

Proceeding in this fashion,

(9)
$$y'(t) > \int_{t}^{\infty} \frac{(t-t_1)^{n-2}}{(n-2)!} a(u)\phi(y)du,$$

and a final integration from t_1 to t gives

$$y(t) > \int_{t_1}^{t} \frac{(u - t_1)^{n-1}}{(n-1)!} a(u)\phi(y) du.$$

The proof now proceeds as in case I.

Now suppose y(t) is a solution of (1) such that for $t \ge T$, y(t) < 0. The proof is the same as the case y(t) > 0 with a(t) and $\phi(y)$ replaced respectively by b(t) and $\psi(y)$ everywhere and with appropriate changes in the sense of inequalities.

Under the hypotheses of this theorem it is possible to have a non-oscillatory solution which tends monotonically to zero if n is odd and case I of Lemma 2 holds for this solution. For example, for n=3 the equation

$$y''' + e^t y^2 \operatorname{sgn} y = 0$$

has the solution $y(t) = e^{-t}$. In this example one can choose $\phi(y) = \psi(y) = y^2 \operatorname{sgn} y$, $\alpha = 1$ and $a(t) = b(t) = e^t$.

Note. If $\int_0^\infty t^{n-1} a(t)dt$ in (2) is finite and in condition (ii), $a(t)\phi(y) \le f(t, y) \le b(t)\psi(y)$ simultaneously in S, a solution in F which is non-oscillatory can be constructed exactly as in [6] making use of the integral equation

$$y(t) = 1 + (-1)^{n-1} \int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} f(s, y(s)) ds,$$

and similarly, if $\int_0^\infty t^{n-1} b(t) dt < \infty$, the integral equation

$$y(t) = -1 + (-1)^{n-1} \int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} f(s, y(s)) ds$$

may be used to construct a nonoscillatory solution.

In the next theorem, condition (v) is changed so that equation (1) includes the special case

$$y^{(n)} + a(t)y^{\alpha} = 0, \qquad 0 \leq \alpha < 1,$$

 α the ratio of odd integers.

Before stating the theorem the following lemma is given, a proof of which may be found in [3, Lemma 1].

LEMMA 3. If y(t), y'(t), \cdots , $y^{(n-1)}(t)$ are absolutely continuous and of constant sign on the interval $[t_0, \infty)$, and $y^{(n)}(t)y(t) \leq 0$, then there exists an integer l, $0 \leq l \leq n-1$, which is even if n is odd and odd if n is even, so that

$$|y(t)| \ge \frac{(t-t_0)^{n-1}}{(n-1)\cdots(n-l)} |y^{(n-1)}(2^{n-l-1}t)|, \quad t \ge t_0.$$

THEOREM 2. Let f satisfy conditions (i)-(iv) and

(vi) there exist positive constants λ_0 , M, N and constants β , γ , where $0 \le \beta < 1$, $0 \le \gamma < 1$, such that

$$\phi(\lambda y) \ge M \lambda^{\beta} \phi(y), \quad y > 0,
\psi(\lambda y) \le N \lambda^{\gamma} \psi(y), \quad y < 0,
\lambda \ge \lambda_0 > 0.$$

Then if

(10)
$$\int_{-\infty}^{\infty} t^{(n-1)\beta} a(t) dt = \int_{-\infty}^{\infty} t^{(n-1)\gamma} b(t) dt = +\infty,$$

each solution in F is oscillatory when n is even and each solution in F is either oscillatory or tends to zero together with its first n-1 derivatives if n is odd.

PROOF. Suppose that n is even and there exists a nonoscillatory solution y(t) such that y(t) > 0 for $t \ge t_0$. Then by Lemma 2, $y'(t) \ge 0$ so y(t) is nondecreasing, and $y^{(n)}(t) \le 0$ so $y^{(n-1)}(t)$ is nonincreasing and positive on $[t_0, \infty)$. Therefore by Lemma 3,

(11)
$$y(t) \ge y(2^{1-n}t) \ge At^{n-1}y^{(n-1)}(t),$$
$$t \ge 2^{n}t_0 = t_1, \text{ where } A = 2^{-n^2}/(n-1)!.$$

Because of condition (ii), y(t) must satisfy

(12)
$$y^{(n)}(t) + a(t)\phi(y) \leq 0$$
,

and since y(t) is nondecreasing, $ky(t) \ge \lambda_0$ for $k \ge \lambda_0/y(t_1)$, $t \ge t_1$, and $\phi(y) \ge (ky)^\beta \phi(1/k) M$ by (vi).

Therefore, letting $B = k^{\beta} \phi(1/k) M > 0$, it follows that $y^{(n)}(t) + Ba(t)y^{\beta} \leq 0$, $t \geq t_1$, and so from (11),

$$y^{(n)}(t) + A^{\beta}Ba(t)^{(n-1)\beta} [y^{(n-1)}(t)]^{\beta} \leq 0.$$

Dividing by $[y^{(n-1)}(t)]^{\beta}$ and integrating from t_1 to t,

(13)
$$\int_{y^{(n-1)}(t_1)}^{y^{(n-1)}(t)} \frac{dy}{y^{\beta}} + A^{\beta}B \int_{t_1}^{t} s^{(n-1)\beta}a(s)ds \leq 0.$$

But, since

$$0 > \int_{\nu^{(n-1)(t_1)}}^{\nu^{(n-1)(t)}} \frac{dy}{y^{\beta}} \ge \int_{c}^{0} \frac{dy}{y^{\beta}}, \quad 0 < c < \infty,$$

and the latter integral is finite for $\beta < 1$, this gives a contradiction of (13) as $t \to \infty$ if $\int_{-\infty}^{\infty} t^{(n-1)\beta} a(t)dt = +\infty$. Thus y(t) must be oscillatory.

The case where y(t) < 0 for $t \ge t_0$ can be handled similarly and yields a contradiction to the fact that $\int_{-\infty}^{\infty} t^{(n-1)\gamma} b(t) dt = +\infty$. The inequalities in (11) and (12) are reversed with $b(t)\psi(y)$ replacing $a(t)\phi(y)$, and the inequality in (13) is in the same direction but with y replaced by -y.

If n is odd and y(t) does not approach zero, then $|y^{(n-1)}(t)|$ is still nonincreasing, so that

$$|y(t)| = |y(t)/y(2^{1-n}t)| \cdot |y(2^{1-n}t)|$$

$$\geq \inf_{t \geq t_0} |y(t)/y(2^{1-n}t)| A |y^{(n-1)}(t)| t^{n-1}, \quad t \geq t_1,$$

hence $|y(t)| \ge B_1 t^{n-1} |y^{(n-1)}(t)|$ for constant B_1 , and the preceding proof again yields a contradiction to the existence of a nonoscillatory solution in class F.

If conditions (ii) and (vi) are extended so that the inequalities there hold for all y, then by modifications of Kiguradze's proofs [3, p. 773], [3, Lemma 5], it can be shown that all solutions of (1) are extendible to infinity under the conditions of Theorem 2, and if either

$$\int_{-\infty}^{\infty} t^{(n-1)\beta} a(t) dt \quad \text{or} \quad \int_{-\infty}^{\infty} t^{(n-1)\gamma} b(t) dt$$

is finite, a solution y(t) of (1) can be exhibited such that $\lim_{t\to\infty} y^{(n-1)}(t) = C_0 \neq 0$. Hence, if (ii) and (vi) are valid for all y, condition (10) is necessary and sufficient for all solutions of (1) to oscillate if n is even and for each solution either to oscillate or tend to zero if n is odd.

REFERENCES

- 1. Š. Belohorec, Oscillatory solutions of certain nonlinear differential equations of the second order, Mat.-Fyz. Časopis Sloven. Akad. Vied 11 (1961), 250-255. (Slovak)
- 2. I. T. Kiguradze, The capability of certain solutions of ordinary differential equations to oscillate, Dokl. Akad. Nauk SSSR 144 (1962), 33-36=Soviet Math. Dokl. 3 (1962), 649-652. MR 25 #278.
- 3. ——, The problem of oscillations of solutions of nonlinear differential equations, J. Differential Equations 3 (1967), 773-782.
- **4.** I. Ličko and M. Švec, Le caractère oscillatoire des solutions de l'équation $y^{(n)}+f(x)y^{\alpha}=0$, n>1, Czechoslovak Math. J. 13 (88) (1963), 481-491. MR 28 #4210.
- 5. A. Kneser, Untersuchungen über die reelen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 42 (1893), 409-435.
- 6. J. W. Macki and J. S. W. Wong, Oscillation of solutions to second-order nonlinear differential equations, Pacific J. Math. 24 (1968), 111-117. MR 37 #507.

Montana State University, Bozeman, Montana 59715