OSCILLATION OF SOLUTIONS OF CERTAIN ORDINARY
DIFFERENTIAL EQUATIONS OF »TH ORDER

GERALD H. RYDER AND DAVID V. V. WEND

AsstrAcT. Necessary and sufficient conditions are given that all
solutions of y™ +£(¢, y) =0 which are continuable to infinity are os-
cillatory in the case » is even and are oscillatory or strongly mono-
tone in the case 7 is odd. The results generalize to arbitrary » recent
results of J. Macki and J.S. W. Wong for the case #=2 and include
as special cases results of I. Kiguradze, I. Litko and M. Svec, and
S. Belohorec.

The equation considered in this paper is
(n y™ 4+ f(t,9) =0,

where f(t, v) is defined in S= [0, ©) X (— ®, »). Let F be the family
of solutions of (1) which are indefinitely continuable to the right; i.e.
if y(t) EF, then there exists =0 such that y(¢) exists on [t5, ©). A
solution y(¢) in F is said to be nonoscillatory if, for some T sufficiently
large, y(¢) is always positive or always negative for ¢t = T'; otherwise
a solution in F is oscillatory.

The first theorem generalizes to arbitrary #=2 a theorem of
Macki and Wong [6, Theorem 1] for the second order equation
" +f(t, y) =0, giving necessary and sufficient conditions for solutions
of (1) in F to be oscillatory. This theorem also generalizes results of
Kiguradze [2, Theorem 5] and Li¢ko and Svec [4] for the respective
special cases y» +yG(y?, t) =0, G(u, t) nonnegative and nondecreas-
ing in %, and y®+4a(t)y*=0, a>1 and « the ratio of odd integers.
The second theorem generalizes results of Li¢ko and Svec [4] and
Belohorec [1] for the latter equation when 0 Sa<1. It also has points
of contact with results of Kiguradze [3].

Assume for equation (1) that

(i) f(, ) is continuous in S;

(i) a(®)é(y) =f(, v) if y>0and f(£, y) LY () if y<O, (¢, Y) ES,
where

(iii) a(t) and b(¢) are nonnegative and locally integrable on [0,«)
and neither a(¢) nor b(f) is identically zero on any subinterval of
[0’ OO),
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(iv) ¢(v) and ¢¥(y) are nondecreasing, and y¢(y) >0 and wW(y)>0
on (— o, o) for y#0, and
(v) for some =0,

f” du < d f“” du <
—— 0 an _— @,
e ¢(u) - Y(u)
Conditions (i) through (v) guarantee that equation (1) is strongly
nonlinear [2].

THEOREM 1. If the function f(t, y) in (1) satisfies (i)—(v) and in
addition

2) f owt”‘la(t)dt = fo wt"“b(t)dt = o,

then if n is even, each solution of (1) in F is oscillatory, while if n is odd,
each solution in F is either oscillatory or it tends monotonically to zero
together with all its first n —1 derivatives.

For convenience, before proving Theorem 1 the possible behavior
of a nonoscillatory solution is summarized in the following two
lemmas [2, Lemma 1], 5, pp. 410, 418-419], the proofs of which
are elementary.

LEMMA 1. Suppose f(t) ECk[a, =), f(£)=0 and f®(t) is monotone.
Then exactly one of the following is true:

(1) limy,e f® () =0,

(1) liMine f®()>0 and f(t), - - -, f*D(t) tend to © as t— .

LEMMA 2. If y(£) EC*[a, »), y() =0 and y™ () <0 on [a, ©), then
exactly one of the following is true:

(1) y'(@), - - -, y»=D(¢) tend monotonically to zero as t— =,

(II) there is an odd integer k, 1 Sk=<n—1, such that lim,., y®()
=0 for 1575k —1, limn, y* P20, limi, y™*D()>0 and
y(), y'(t), « - -, ¥y *D() tend to © as t— .

Analogous statements can be made if y(¥) <0 and y™(¢)=0 on
[a, «).

Proor oF THEOREM 1. Suppose ¥(¢) is a nonoscillatory solution in
F, say y(t)>0 for t=T=0. From (1),

) y™ (@) = — ft, y(1)) £ — a(De(¥(D)).

By Lemma 1, y*=(¢) decreases to a nonnegative limit, so from (3),
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) yo(s) 2 [ "awely)dn

Suppose case I of Lemma 2 holds. Then an integration of (4) n—2
times from ¢ to « yields

s o0z [T swetrtwnan

If # is even, integrating (5) from T to t= T,

t — T n—1
02 [ ST s

Since ¢ (u) is nondecreasing,

s60) /o] [ S0 stsotnan] 2 1,

so, as in [6],

f:[os(v)l-*dv 2 f ' (’(T__Eaa)dz,

1!
where
r= [T O aetrnin
and
s= f i): () (5 () .

If for some r= T, RZ«, then condition (v) gives a contradiction to
condition (2), while if R<a for all 7= T, then
r w—T n—1
a>R2 ¢(y(T))f ez a(u)du,

again in contradiction to condition (2).
If » is odd, then

© oz %a<u>¢(y<u>>du 20,

so y(t) decreases to a limit L=0.



466 G. H. RYDER AND D. V. V. WEND [July

Suppose L>0. Then integrating (6) from T to «,

90y > 1) = 2 [T ETEE et
2o - (“n__ E ot

since ¢(y) is nondecreasing in y. But this implies

f "la()dt < .
0

Suppose now that case II of Lemma 2 holds. Proceeding as in
case I,

) yR() 2 fw (Ztk—_—l)_'a(u)ﬂy)du.

Since ¥y (t) increases to infinity, j<un—k—1, there exists {;= T such
that y@(¢) >0 for t=4, j=0, - - -, n—k—1. Integrating (7) from #
to t>t1,

y—ktD) (1) >f fw (u — i)_' a(u)p(y(u))duds

> f "o ")L n = 0 L eis)au,

SO

(8) y (kD) (1) >fm ¢ _k'tl) a(u)p(y)du.

Integrating (8) from ¢ to ¢,
(kD) () > fw (t_—tl)ma(u)d,( Ydu
Y RSN P
Proceeding in this fashion,
, © (t—t)m?
©) yO > [ e,
and a final integration from £ to ¢ gives

t — tl n—1
w0 > [ (—?;_—i)Ta(u>¢<y>du.
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The proof now proceeds as in case 1.

Now suppose y(t) is a solution of (1) such that for =T, y(¢t) <O0.
The proof is the same as the case y(f) >0 with a(¢) and ¢(y) replaced
respectively by &(t) and ¢(y) everywhere and with appropriate
changes in the sense of inequalities.

Under the hypotheses of this theorem it is possible to have a non-
oscillatory solution which tends monotonically to zero if # is odd and
case I of Lemma 2 holds for this solution. For example, for n =3 the
equation

Y + ey*sgny = 0

has the solution y(f) =e~*. In this example one can choose ¢(y) =¢/(y)
=y%2sgny, a=1 and a(t) =b(t) =¢".

Note. If [¢ t~=1a(t)dt in (2) is finite and in condition (ii), a(f)¢(y)
=f(t, y) =b()Y(y) simultaneously in S, a solution in F which is non-
oscillatory can be constructed exactly as in [6] making use of the
integral equation

© (S —_ t)n-—-l

90 = 1+ (-1 [ PR CETOIL

and similarly, if fg’ t»~15(f)dt< =, the integral equation

© (s — )1

R O R O

may be used to construct a nonoscillatory solution.
In the next theorem, condition (v) is changed so that equation (1)
includes the special case

y™ +a(®)y*=0, 0=a<l,

« the ratio of odd integers.
Before stating the theorem the following lemma is given, a proof
of which may be found in [3, Lemma 1].

LemMmA 3. If y(8), y'(t), - - -, ¥V (¢) are absolutely continuous and
of constant sign on the interval [t,, ©), and y(£)y() L0, then there
exists an integer I, 0SI<n—1, which is even if n is odd and odd if n is
even, so that

(t — to)m!
):---(n-1

150] 2 — @], iz
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THEOREM 2. Let f satisfy conditions (1)—(iv) and
(vi) there exist positive constants No, M, N and constants B3, vy, where
0=58<1, 0=2v<1, such that
) = MMe(y), v >0,
o(Ay) (), v XS A > 0.
¥(Ay) = NM\w(y), <0,
Then of
(10) f t=Db8g(t)dt =f [=D1p()dt = + o,

each solution in F is oscillatory when n is even and each solution in F
is either oscillatory or tends to zero together with its first n—1 derivatives
if nis odd.

PRroOF. Suppose that % is even and there exists a nonoscillatory
solution y(f) such that y(¢) >0 for t=ty. Then by Lemma 2, y'(¢) =0
so y(¢) is nondecreasing, and y(¢) £0 so y»—D(¢) is nonincreasing
and positive on [fy, ©). Therefore by Lemma 3,

1) y(@) Z y(2'm0) 2 At"“y"‘:"(t),
t= 2%, =1, where 4 =2"/(n — 1)!.
Because of condition (ii), y(f) must satisfy

(12) y® (@) + a(ely) =0,

and since y(¢) is nondecreasing, ky(t) =N, for E=No/y(t), t=t, and

¢ () = (ky)Pp(1/k) M by (vi).
Therefore, letting B=FkFp(1/k)M >0, it follows that y™(f)
+Ba(t)y* <0, t2 4, and so from (11),

y® (1) + ABBa(t) (n—l)ﬁ[y(n—l)(t)]ﬂ <0.

Dividing by [y*=?(#)]® and integrating from # to ¢,
v D gy t

(13) f =+ AﬂBf sBg(s)ds = 0.
vy 9 t

But, since
R OW,) 04
0>f —yéf _y’ 0<c< o,

yoDapy ¥ Je Y

and the latter integral is finite for 3<1, this gives a contradiction of
(13) as t— o if [* t®=V8 g(t)dt =+ «. Thus y() must be oscillatory.
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The case where y(¢) <0 for £ = ¢, can be handled similarly and yields
a contradiction to the fact that [* t®™=D7 p(f)dt = + ». The inequali-
ties in (11) and (12) are reversed with b(¢){ (y) replacing a ()¢ (y), and
the inequality in (13) is in the same direction but with ¥ replaced
by —y.

If » is odd and y(¢) does not approach zero, then l yo=D ()| is still
nonincreasing, so that

[y | = | y@)/3@) ] - | v |
int [y0)/y@) | Ay |1, 12 4,

1%

hence Iy(t)l ;Blt"‘lly("—”(t)l for constant Bj, and the preceding
proof again yields a contradiction to the existence of a nonoscillatory
solution in class F.

If conditions (ii) and (vi) are extended so that the inequalities
there hold for all y, then by modifications of Kiguradze's proofs
[3, p. 773], [3, Lemma 5], it can be shown that all solutions of (1)
are extendible to infinity under the conditions of Theorem 2, and
if either

f {—=DBg(H)dt or ft(’“”"b(t)dt

is finite, a solution y(¢) of (1) can be exhibited such that lim,,, y®=(z)
= Co7#0. Hence, if (ii) and (vi) are valid for all y, condition (10) is
necessary and sufficient for all solutions of (1) to oscillate if # is even
and for each solution either to oscillate or tend to zero if # is odd.
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