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Abstract. Necessary and sufficient conditions are given that all

solutions of yM+f(t, y) =0 which are continuable to infinity are os-

cillatory in the case n is even and are oscillatory or strongly mono-

tone in the case n is odd. The results generalize to arbitrary n recent

results of J. Macki and J. S. W. Wong for the case n = 2and include

as special cases results of I. Kiguradze, I. LiCko and M. Svec, and

§. Belohorec.

The equation considered in this paper is

(1) yM +fQ,y) = 0,

where fit, y) is defined in S = [0, <*>) X (— °°, =°). Let F be the family

of solutions of (1) which are indefinitely continuable to the right; i.e.

if yil)EF, then there exists io^O such that yit) exists on [to, °°). A

solution y(t) in Fis said to be nonoscillatory if, for some T sufficiently

large, y(t) is always positive or always negative for t}zT; otherwise

a solution in F is oscillatory.

The first theorem generalizes to arbitrary «^2 a theorem of

Macki and Wong [6, Theorem l] for the second order equation

y"+f(t> y) = 0. giving necessary and sufficient conditions for solutions

of (1) in F to be oscillatory. This theorem also generalizes results of

Kiguradze [2, Theorem 5] and Licko and Svec [4] for the respective

special cases yu)+yG(y2, t)=0, G(u, t) nonnegative and nondecreas-

ing in u, and y^ +a(t)ya = 0, a>l and a the ratio of odd integers.

The second theorem generalizes results of Licko and Svec [4] and

Belohorec [l ] for the latter equation when 0 ^a < 1. It also has points

of contact with results of Kiguradze [3].

Assume for equation (1) that

(i) fit> y) is continuous in S;

(ii) ait)<piy) £f(t, y) if y>0 and/(*. y) £b(tW(y) ify<0, it,y)ES,
where

(iii) ait) and bit) are nonnegative and locally integrable on [0, °°)

and neither ait) nor bit) is identically zero on any subinterval of

[0,   »),
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(iv) <b(y) and \f/(y) are nondecreasing, and y<j>(y)>0 and yp(y)>0

on (— co , co) for yy^O, and

(v) for some a^O,

/"»    du                            r~°°    du
- < co    and      I        - < co.

a        4>(u)                                           J-a       ̂ (u)

Conditions (i) through (v) guarantee that equation (1) is strongly

nonlinear [2J.

Theorem 1. If the function f(t, y) in (1) satisfies (i)-(v) and in

addition

/l  CO /»  CO
ln-la(t)dt =  I    tn~lb(t)dt = co,

0 " 0

then if n is even, each solution of (1) in F is oscillatory, while if n is odd,

each solution in F is either oscillatory or it tends monotonically to zero

together with all its first n — 1 derivatives.

For convenience, before proving Theorem 1 the possible behavior

of a nonoscillatory solution is summarized in the following two

lemmas [2, Lemma l], [5, pp. 410, 418-419], the proofs of which

are elementary.

Lemma 1. Suppose f(t)ECk[a, °°),/(/) ;>o andf(k)(t) is monotone.

Then exactly one of the following is true:

(i)lim^M/(*>(0=0,
(ii) lim,_M/<*>(0>0 andf(t), ■ ■ ■ , /<*-»(*) tend to °° as *->«>.

Lemma 2. If y(t)EO[a, <*>), y(t) = 0 and yM(t)^0 on [a, co), then

exactly one of the following is true:

(I) y'(t), • ■ • . y(n_1'(0 tend monotonically to zero as <—><x>,

(II) there is an odd integer k, 1 ̂ k^n — 1, such that lim^a, y(n_J)(0

= 0 for l^j = k-l, lim^y-^W^O, lim,^ yin~k-»(t)>0 and

y(t), y'(t), ■ ■ ■ , yn-*-«(0 tend to » as <-»<».

Analogous statements can be made if y(t)^0 and y(n)(i)^0 on

[a, co).

Proof of Theorem 1. Suppose y(t) is a nonoscillatory solution in

F, sayy(t)>0iort^T^0. From (1),

(3) yM(t) = -f(t,y(t)) g - a(t)<b(y(t)).

By Lemma 1, v<n_1)(0 decreases to a nonnegative limit, so from (3),
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/»  CO

(4) y<-»-»is) ̂    I    a(u)d>(y(u))du.

Suppose case I of Lemma 2 holds. Then an integration of (4) n — 2

times from / to °o yields

/"" iu - t)n~2
1-J—~ aiu)<piyiu))du.

t      in — 2) 1

If n is even, integrating (5) from T to t^T,

f   iu - T)"-1
yW -  I      "~;-777~ aiu)d>iyiu))du.

J t      (» — 1)!

Since <j>iu) is nondecreasing,

/r  /• <   (M _ y)n-i "1

*U   -r—^ra{u)4>{y{-u))du\ - 1-

so, as in [6],

n.s r- it- r)"-1
[*(v)]-Vv* ±--—ait)dt,

J r J t      in — 1)1

where

/"■ iu - r)"-1—-—— aiu)<piyiu))du
T           (»  —   1)1

and

/• •  iu — r)"-1—-—- a(u)<t>(y(u))du.
t      (n — 1)1

If for some r^T, R^a, then condition (v) gives a contradiction to

condition (2), while if R<a for all r ^ T, then

C r   (u - 7)"-1

a > R ^ 4>(y(T)) ±--'— a(u)du,
J t      (n — 1)!

again in contradiction to condition (2).

If n is odd, then

/' °°  (u — t)n~2
-.-— a(u)<p(y(u))du ^ 0,

(      (n — 2)1

so y(t) decreases to a limit L ^ 0.
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Suppose L > 0. Then integrating (6) from T to co,

/""(«- T)"-1
-— a(u)d>(y)du

t      (» — 1)!

fM   (« - T)"'1^ $(L) I      —-—— a(u)du,
J t       (n — 1)1

since <p(y) is nondecreasing in y. But this implies

/I   CO

in~la(t)dt < oo.

o

Suppose now that case II of Lemma 2 holds. Proceeding as in

case I,

\       '      a(u)<p(y)du.
t      (k — 1)\

Since yu)(t) increases to infinity, j<n — k — l, there exists h^T such

that y^(t)>0 for t^h,j = 0, ■ ■ ■ , n — k-1. Integrating (7) from h

to t>h,

"71-7T7 <*(«)*(>(«))<*«<**
t! •/.       (& — 1)!

/""(«- /i)4 - (m - 0*-a(u)4>(y)du,
t                    k\

so

C  (t- h)k
(8) y(»-*+D(/) >-a(u)<b(y)du.

J t k\

Integrating (8) from h to i,

/'"(/ — h)k+1^——— a(«)*60<*«.
(       (A + 1)1

Proceeding in this fashion,

/"*  (t — h)"~2-— a(u)cb(y)du,
t      (n — 2)!

and a final integration from ti to t gives

/"   (u — ti)n~1
—-—- a(u)d>(y)du.

h     (n ~ 1)!
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The proof now proceeds as in case I.

Now suppose yit) is a solution of (1) such that for t^T, yit)<0.

The proof is the same as the case yit) >0 with ait) and <j>iy) replaced

respectively by bit) and ip(y) everywhere and with appropriate

changes in the sense of inequalities.

Under the hypotheses of this theorem it is possible to have a non-

oscillatory solution which tends monotonically to zero if n is odd and

case I of Lemma 2 holds for this solution. For example, for n = 3 the

equation

y'" + e'y2 sgn y = 0

has the solution y(t) =e~'. In this example one can choose <b(y) =ty(y)

= y2 sgn y, a = l and a(t) =b(t) =e*.

Note. If fo tn_1 a(t)dt in (2) is finite and in condition (ii), a(t)<f>(y)

=/('> y)=bit)ipiy) simultaneously in S, a solution in F which is non-

oscillatory can be constructed exactly as in [6] making use of the

integral equation

J00 is - O"-1
-—fis,yis))ds,

t     (» — 1)!

and similarly, if _/o° /n_1 bit)dt< °o, the integral equation

/'" (s — t)"-1-—fis, yis))ds
i     in — 1)!

may be used to construct a nonoscillatory solution.

In the next theorem, condition (v) is changed so that equation (1)

includes the special case

y™ + ail)y = 0,        0 ^ a < 1,

a the ratio of odd integers.

Before stating the theorem the following lemma is given, a proof

of which may be found in [3, Lemma l].

Lemma 3. If yit), y'it), ■ ■ ■ , y("-» it) are absolutely continuous and

of constant sign on the interval [to, «>), and y(")(0y(0 =0> then there

exists an integer I, O^l^n — 1, which is even if n is odd and odd if n is

even, so that

Iy(t) I = 7—((r hY, *—n I y(-1>(2*-,-101 ,     t^h.
(n — 1) ■ • • (n — I)
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Theorem 2. Let f satisfy conditions (i)-(iv) and

(vi) there exist positive constants Xo, M, N and constants B, y, where

0=8<1, OisY<l, such that

<p(Xy) £ MXWy),    y > 0,       x^x   >Q
*(Xy) g NW(y),    y<0,

Then if

/OO /i   COt^-™a(t)dt =   I      t^~l)-<b(t)dt =  +  co,

eac& solution in F is oscillatory when n is even and each solution in F

is either oscillatory or tends to zero together with its first n — 1 derivatives

if n is odd.

Proof. Suppose that n is even and there exists a nonoscillatory

solution y(t) such that y(t)>0 for t^t0. Then by Lemma 2, y'(t) 2:0

so y(t) is nondecreasing, and y(n)(t)^0 so y(n_1)(i) is nonincreasing

and positive on [to, co). Therefore by Lemma 3,

y(t) > y(21~"t) ^ At»-y>-»(t),

t^2»tQ = ti,    where    A = 2~n2/(n - 1)!.

Because of condition (ii), y(t) must satisfy

(12) yW(t) + a(t)4>(y) ̂  0,

and since y(t) is nondecreasing, ky(t)^\0 for kz±'Xo/y(ti), t^h, and

4>(y) = (kyY4>(l/k)M by (vi).
Therefore, letting B = ¥<p(l/k)M>0, it follows that yM(t)

+Ba(t)yf>g,0, t = h, and so from (11),

y<">(0 + A»Ba(tYn-^[y^-l\t)}» g 0.

Dividing by [y("_1)(i)]3 and integrating from h to t,

/•v(B_1)(0 ^ /•<
(13) — + A»B I   iCn-l^a(5)^ =5 0.

But, since

0 > — ^   I     — >        0<c<=o,

and the latter integral is finite for /3<1, this gives a contradiction of

(13) as t-+ co if /» <(»-»!» a(0<Zi = + ». Thus y(0 must be oscillatory.
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The case where yit) <0 for t ^t0 can be handled similarly and yields

a contradiction to the fact that f" ^"-Ut bit)dt= + oo. The inequali-

ties in (11) and (12) are reversed with bit)\piy) replacing ait)4>iy), and

the inequality in (13) is in the same direction but with y replaced

by -y.
If n is odd and yit) does not approach zero, then |y("_1)(0| is still

nonincreasing, so that

I yit) I = I yit)/yi21-"t) | • | y(21-t) \

^ inf | yii)/yi21-"t) \ A \ y<-"-»ii) | t*~\       t ^ lh

hence \yit)\ ^Bitn~1\y<-n~1)it)\ for constant Bi, and the preceding

proof again yields a contradiction to the existence of a nonoscillatory

solution in class F.

If conditions (ii) and (vi) are extended so that the inequalities

there hold for all y, then by modifications of Kiguradze's proofs

[3, p. 773], [3, Lemma 5], it can be shown that all solutions of (1)

are extendible to infinity under the conditions of Theorem 2, and

if either

/CO f\   COt^-maQ)dt   or     I    t^-VtbiQdl

is finite, a solution yit) of (1) can be exhibited such that lim^a, y(n_1)(2)

= Cot£Q. Hence, if (ii) and (vi) are valid for all y, condition (10) is

necessary and sufficient for all solutions of (1) to oscillate if n is even

and for each solution either to oscillate or tend to zero if n is odd.
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