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Abstract. The theory of Liapunov's direct method is developed

for boundary value problems occurring in ordinary differential

equations. Conditions are given in terms of a Liapunov function

which are sufficient to insure uniqueness and existence of solutions

of boundary value problems. A suitable Liapunov function is ob

tained to give conditions obtained by Hartman as special cases.

1. Introduction. Many techniques and theories developed for

boundary value problems of ordinary differential equations originated

as initial value concepts. For example, fixed point theorems [l],

Picard's iteration [4], and differential inequalities [2], [3], [4] are

commonly used techniques in both initial and boundary value prob-

lems.

A theoretical technique that has proved extremely useful in initial

value theory [5], but does not seem to be given its due in boundary

value theory, is the direct method of Liapunov. In initial value prob-

lems, since necessary and sufficient Liapunov function conditions are

obtained for many types of solution behavior, the theory can be

considered as a unifying concept. That is, all known sufficient con-

ditions can be obtained by choosing the proper Liapunov function,

as is done by Yoshizawa [5, p. 10 ] for the Lipschitz condition as a

uniqueness criterion. (See George [7] for a Liapunov function for

more general uniqueness theorems.) Yoshizawa [3] has obtained a

Liapunov result for boundary value problems, giving necessary and

sufficient conditions for the boundary value solution to remain be-

tween two estimates obtained by differential inequalities.

We shall develop a Liapunov theory for existence and uniqueness

of solutions of boundary value problems. Also the existing theory of

Hartman will be shown to be included in our theory by a suitable

Liapunov function selection.

2. Preliminaries and notation. Let us consider the system of

ordinary differential equations
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(1) x"=fit,X,x'),

where x and / are w-vectors, ' = d/dt, and / is a function defined and

continuous on a domain D= [a, b]XD, where [a, b] is an interval

on the real line and DER2n-

xit) belongs to class G^f/i, t2] ii x"(t) is continuous on [h, t2].

The boundary value problem is that of finding a solution x{t) of

(1) on [a, b] satisfying for b>a,

(2) x(a) = A,        xib) = B.

The corresponding initial value problem is obtaining a solution x{t)

of (1) satisfying the initial values

(3) x(a) = A,       x'ia) = a.

A Liapunov function V{t, x, x') is a continuous, locally Lipschitzian

with respect to {x, x'), real valued function. Corresponding to

Vit, x, x') define

V/it, x, x1) =lim inf h~l[V(l+h, x+hx', x'+hfit,x,x'))-V(t, x, x')],
h->0*

V'(t, x, x') =lim inf lrl[V(t+h, x(t+h), x'(t+h))-V(t, x(t), x'(t))].

Lemma 2.1 (Yoshizawa [5, p. 4]). If V(t, x, x') is a Liapunov func-

tion and x(t) is a solution of (1), then V'(t, x(t), x'(t)) = V}(t, x(t), x'(t))

and V(t, x(t), x'(t)) is nonincreasing (nondecreasing) if and only if

V'f(t, x, x')S0 (V',(t, x, x') = 0).

Lemma 2.2. Let x(t) be a solution of (1) satisfying

(4) x(a) = 0,        x'(a) = 0,

and suppose that either x(t)^0 or x'(t) ^0 on [a, b]. Then there exists

an open interval IE [a, b] such that both x(t) t*0 and x'(t) 9*0 on I.

Proof. Suppose x(t) f^O on [a, b]. Then by continuity of x(t) there

exists an open interval Ii=(t0, ti) such thatx(<) 9*0 on Zi, and x(t0) =0.

Assume x'(t) =0 on It. Then x(t) =c on Iu where c is a constant, and

c = 0 since x(t0)=0. Since x'(t) is continuous there exists an open

interval hEIi where x'(t) 9*0. Thus on 1 = IiHh, x(t) 9*0 and x'(t) 9*0.

If x'(0t=0 on [a, b] a similar argument concludes the proof.

Let (x, y) be the inner product in n-dimensional Euclidean space

and let ||x||2 = (x, x) be the corresponding norm.

3. Uniqueness and continuability. Let u(t) be a solution of the

boundary value problem (1) and (2). What conditions on / insure
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that u(t) is the only solution of (1) and (2)? Many criteria on/ are

given to insure uniqueness; for example, the Lipschitz condition [4]

and nondecreasing properties [2, p. 317] are standard sufficient con-

ditions. We shall develop a Liapunov theory for boundary value

problems which gives sufficient conditions for uniqueness.

Suppose v(t) is another solution of (1) and (2). If x = u— v, then x

must satisfy

(5) x" = /(*, u, «') - /(/, u-x,u'~ x') = F(t, x, x'),

(6) x(a) = 0,       x(b) = 0.

Now F(t, 0, 0) =0 and hence x(t) =0 is a solution satisfying (5) and

(6). We have proved the following:

Lemma 3.1. x(t) =0 is the only solution of (5) and (6) if and only if

u(t) is the only solution of (1) and (2).

Theorem 3.1. For F defined in (5), if there exists a Liapunov func-

tion V(t, x, x') defined on D such that

(i) V(t, x, x')=0ifx = 0,
(ii) V(t, x, x')>0ifxy£0,
(iii) V'r(t, x, x') ^0 in the interior of D,

then there is at most one solution of (1) and (2).

Proof. By Lemma 3.1 it suffices to show x(t)=0 is the unique

solution of (5) and (6). Suppose there exists a solution <p(t) of (5)

such that c6(0)=O, <b(b)=0, and ^(tijy^O for some *iG(a, b). Then

there exists [t2, ^]C[0, b] such that tiE(t2, t3), <p(t2)=4>(h)=0, and

<p(t) y±0 on (h, h). Thus V(t, <p(t), <t>'(t))>0 on (t2, t3). Since V'F(t, x, x')

3:0, V(t, <p(t), <p'(t)) is nondecreasing along the solution <p(t) and thus

V(h, <p(ts), <p'(t3))>0, a contradiction.

Corollary 3.1. If there exists a Liapunov function as in Theorem

3.1 except that (ii) holds when both x and x' are y^0, then a solution of

(1) and (2) is unique.

Proof. Follows as in Theorem 3.1 by using Lemma 2.2.

Example. In Hartman [l, p. 427] the condition (x, P)+||x'|j2>0

if xy^0 and (x, x') = 0 is given to insure uniqueness of x = 0. By choos-

ing V(t, x, x') = (x, x) all conditions of Theorem 3.1 are satisfied,

since Hartman's condition insures V does not have a maximum,

and hence V'F(t, x, x') ^0.

Because it may be convenient to give continuability conditions,

such as are required by Jackson [2] in the theory of sub and super-

functions, as Liapunov conditions, it will simply be mentioned that
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the necessary and sufficient conditions for continuability are given by

Yoshizawa [5, pp. 11-17].

4. Existence. If / is bounded, then it is possible to give local

existence results such as the following (see also [l, p. 424]):

Theorem 4.1 (Jackson [2, p. 309]). Let Af>0 and N>0 be given

real numbers and let g = max||/(Z, x, x')|| on [a, b] X {x:\\x\\ S2M}

X{x':\\x'\\S2N}.
Let 5 = min [(SAf/g)1'2, (2N/q)]. Then for any [h, t2]E[a, b] such

that 0<t2-hS5,

(7)       x(ti) = Xi,        x(t2) = x2,    where ||xi|| S M,        \\x2\\ S Af,

and where ||(x2 —Xi)/(/2 —h)|] SN, the boundary value problem (1) and

(7) has at least one solution.

Lemma 4.1 (Hartman [l, p. 432]). Suppose f(t, x, x') is defined and

continuous on DM= [a, b]x {x: ||x|| SM} XRn and let N>0 be given.

Then for any [h, t2]E [a, b] there exists a continuous bounded function

g(t, x, x') defined on [h, t2]XR2n such that f(t, x, x')=g(t, x, x') on

Di= [h, t2]x{x: \\x\\ SM}X {*': \\x'\\ SN}.

We are now in a position to give Liapunov sufficient conditions

for the existence of a solution of the boundary value problem (1) and

(7). For g(t, x, x') obtained in Lemma 4.1, consider

(8) x" = g(t, x, x').

Theorem 4.2. Let x(t) be a solution of (8) defined on [t\, t2]E [a, b]

and suppose that \\x(ti)\\SM, ||x(/2)|| = Af. Suppose there exists a

Liapunov function V(t, x, x') defined on D2=[ti, /2]x{x: ||x||^Af}

XRn such that

(i) V(t, x, x') =0 whenever ||x|l = Af,

(ii) V(t, x, x') >0 whenever ||x]| > M,

(iii) V'Q(t, x, x') SiO in the interior of D2.

Then \\x(t)\\SM on [h, t2].

Proof. Follows as in Theorem 3.1.

Example. Hartman [l, p. 433] gives the following condition to

insure ||x(/)|| ^Af.

<*, g) + IMI2 > 0       if <*, %') = 0    and   ||x|| ̂  M.

If V(t, x, x') = (x, x) —Af2, then Hartman's condition implies V

evaluated along a solution x(t) of (8) does not have a maximum at
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any point tE [h, t2] where \\x(t)\\ ^M. Hence this V satisfies all con-

ditions of Theorem 4.2, thus insuring ||x(<)|| SM on [ti, t2].

Theorem 4.3. Let x(t) be any function of class C2[h, t2] satisfying

\\x(t)\\ S M on [h, t2]. Suppose there exists a Liapunov function V(t, x, x')

defined on D3= [h, t2] X {x: ||x|| SM} XR" satisfying

(i) V(ti,x(h),x'(ti))=0,

(ii) V(t, x, x') ==: (t — ti)4>(\\x'\\), where <p is a positive continuous func-

tion defined on [0, oo) such that <p(r)—><x> as r—»°o,

(iii) there exists a positive constant L such that V'(t, x, x') SL in the

interior of D3.

Then there exists a positive constant N such that ||x'(/)|| SN on [h, t2].

Proof. By (ii) there exists a constant N such that </>(/-) >L when-

ever r^N, and by (iii),

V(t, x(t), x'(t)) - V(h, x(h), x'(h)) S L(l - h)        for any / G [h, k].

Suppose that ||x'(/3)|| ^ A for some t3E(k, '2]. Then

0 = V(h, x(h), x'(h)) ^ V(h, x(h), x'(h)) - L(t3 - h)

^ (t3 - ti)(<j>(\\x'(t3)\\) - L)

> 0,        a contradiction.

Hence ||x'(/)|| <N on (h, t2], and since x'(t) is continuous on [tu t2],

\\x'(t)\\SN on [h,t2].

Theorem 4.4. Suppose f(t, x, x') is defined and continuous on Dm

and suppose there exist two Liapunov functions with the properties given

in Theorems 4.2 and 4.3 respectively. Then the boundary value problem

(1) and (7) has at least one solution.

Proof. For the constant A given by Theorem 4.3 construct the

function g(t, x, x') given by Lemma 4.1. Since the function g(t, x, x')

is continuous and bounded on [/1f t2] XR2n, the boundary value prob-

lem (8) and (7) has a solution x(t). Since ||x(*i)|| SMand ||x(£2)|| SM,

Theorem 4.2 implies ||x(£)|| SM on [ti, t2]. Then Theorem 4.3 gives

||x'(0|| SN on [h, t2], and since f(t, x, x') =g(t, x, x') on Di, x(t) is a

solution of the boundary value problem (1) and (7).

5. Obtaining existence from uniqueness. This interesting concept

was introduced by Lasota and Opial [6] and Jackson [2]. We shall

restrict our considerations in this section to second order differential

equations where/(/, x, y) is defined, continuous and real valued on the

strip P>4=(0, b)XR2. Let D6= [h, t2]xR2 where a<h<t2<b.
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Theorem 5.1 (Lasota, Opial [6, p. 2]). Assume solutions to initial

value problems through any point of D& are unique. If there exists at most

one solution of (1) and (7) for every pair (h, xi), (t2, x2)E(a, b) XR then

there exists one and only one solution of this problem.

Theorem 5.2. If solutions to initial value problems through any point

of Di are unique and there exists a Liapunov function as in Theorem

3.1, then there exists one and only one solution of (1) and (7) as in

Theorem 5.1.
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