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Abstract. In the present paper, we prove that if X is a subpro-

jective Banach space, then the ideal of strictly singular operators on

X is equal to the ideal of inessential operators on X. We give an

example to show that equality does not hold for all Banach spaces

X.
We also investigate the relationship between the semi-Fredholm

operators on a Banach space and the right and left null divisors in

the quotient algebra of all the bounded operators modulo the ideal

of compact operators. We are able to get some complete charac-

terizations of the null divisors when the Banach space is subpro-

jective.

1. Introduction. If X is a Banach space, let BiX) denote the Banach

algebra of all bounded linear operators from X into itself. An operator

TEBiX) is said to be strictly singular [4] if T is not a homeomorph-

ism when restricted to any closed infinite-dimensional subspace of X.

Let S{X) denote the closed two-sided ideal of strictly singular oper-

ators in BiX). Let Rad A denote the Jacobson radical of any ring A.

If K{X) denotes the ideal of compact operators on X, then define

I(X)=ir-l[Rad(B(X)/K(X))], where ir is the canonical homo-

morphism from BiX) onto BiX)/KiX). IiX) is a closed two-sided

ideal of BiX), called the ideal of inessential operators. A Banach

space X is subprojective if, given any closed infinite-dimensional

subspace M of X, there exists a closed infinite-dimensional subspace

TV contained in M and a continuous projection of X onto TV. Subpro-

jective spaces were investigated by R. J. Whitley [8]. In §2 we prove

that if X is subprojective, then IiX) = SiX). We also give an example

to show that equality does not always occur. In §3 we investigate the

relationship between the semi-Fredholm elements of BiX) and the

null divisors in B(X)/K(X).

2. For any ring A, xEA is properly left quasi regular if yx is left

quasi regular for all yEA. N. H. McCoy [6] characterized Rad A

as the set of all xEA which are properly left quasi regular. Therefore
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if X is any Banach space and TEB(X), then w(T)ERad(B(X)/K(X))

if and only if ir(T) is properly left quasi regular in B(X)/K(X),

but this is true if and only if w(I) — ir(W)ir(T) is left invertible in

B(X)/K(X) for all WEB(X), where / is the identity operator on X,

or equivalently by [9, p. 609] I— WTE$+(X) and there exists a con-

tinuous projection of X onto the range of I—WT lor all WEB(X).

Here$+(A") are all operators in B (X) with finite-dimensional null space

and closed range. $(X) will denote the Fredholm operators in B(X).

Lemma 2.1. Let X be any Banach space. Then T*EI(X*) implies

that TEI(X).

Proof. M. Schechter [7, 1143] remarks that F(X) = {TEB(X)\

T+ UE$(X) for all UE$(X)} is the largest ideal contained in the set

of Riesz operators. This characterization also holds for I(X) by [5],

so I(X) = F(X). Therefore suppose T(£l(X), then there exists a

UE$(X) such that T+U<$$(X). B. Yood [9, p. 601] proved that
WE$(X) if and only if W*E$(X*). So T*+ U*<£$(X*) and
UE<S>(X) implies U*E$(X*). Therefore T*<£l(X*) by the equiv-

alence of I(X*) and F(X*). So T*EI(X*) implies TEI(X).

Theorem 2.2. Let X be any subprojective Banach space. Then

S(X)=I(X).

Proof. S. R. Caradus [l, p. 66] proved that S(X)EI(X) lor any

Banach space X.

To prove the converse take TEI(X) and suppose T(£S(X). Hence

there exists a closed infinite-dimensional subspace XiEX such that

T is a homeomorphism of Xi onto T(Xi). T(X{) is a closed infinite-

dimensional subspace of X, so since X is subprojective there exists an

infinite-dimensional closed complemented subspace X2ET(Xi),

where X = X2@X3. Define TEB(X) by f ^P-1 on X2 and T = 0 on

X3. Since TEI(X) we know v(T)ERad(B(X)/K(X)), so I-WT
E$+(X) for all WEB(X), in particular I-TTE<&+(X). This implies

the null space of I—TT is finite-dimensional. T is a homeomorphism

on X2, so T(X2) is an infinite-dimensional subspace of X and TTT(X2)

= T(X2), since TT is the identity on X2. Therefore (I-TT)(T(X2))

= 0, which implies T(X2) is contained in the null space of I—TT.

This implies the null space of I—TT is infinite-dimensional, a con-

tradiction. Therefore TES(X), so I(X)ES(X).
An Example. I. A. Feldman, I. C. Gohberg and A. S. Markus

[3] give an example of an operator, V, on X = la®Lp, Kp<q<2,

such that V$S(X) but V*ES(X*). This example shows that our

theorem cannot be generalized to reflexive spaces (in fact X is also
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superprojective [8, p. 255]), since V*ESiX*)EIiX*), [l], implies

VEIiX) by Lemma 2.1, but V<£S(X), so this implies S(X)^I(X).
Note that this example also shows that a converse to [8, Theorem

2.2, p. 254] is not possible, sinceX* = lq>®Lp> with 2<q'<p'implies

X* is subprojective, but V*ESiX*) and V= V**<£SiX**).

3. Let TV' (TV) denote the set of left (right) null divisors

in B{X)/K{X), and let Gl (Gr) denote the set of left (right) invertible

elements in B{X)/K{X). For each TEBiX) let N(T) denote the null

space of T, and R{T) denote the range of T. Let nul T be the dimen-

sion of N{T) and def T be the codimension of the closure of R{T) in

X. Set

*_(*) = {T E BiX) | def T < «, range T closed}.

The members of $+iX) and $-iX) are called the semi-Fredholm ele-

ments of BiX).

]c shall denote the set complementation.

B. Yood [9, p. 609] has shown that the following characterizations

hold for any Banach space X:

ir-KG) = HX),

7r_1(Gr) = {T E $-(X) [ there exists a continuous

projection onto TV(r)},

and

fl-_1(G') = {T E $+iX) I there exists a continuous

projection onto RiT)}.

It follows trivially that:

t-^TV') H tt-^TV) C [*(X)>,

ir-OT C k-KGOK
and

a-KiVO c [r-l(p)h

Lemma 3.1. Let X be any Banach space. Then

x-KTVO C [*-(X)]>.

Proof. Suppose TEir-^N'^^iX). Then TEir-KN') if and only

if there exists a QEK(X)3QT=WEK(X), and TG^-W implies
def T< =0, so A^=i?(r)©Tkf, where M is finite-dimensional.

Clearly Q is not compact on R(T), since 6} compact on R(T) implies

Q compact on X = R(T) (BM, contrary to the choice of Q. But Q\ S(d
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not compact implies QT(£K(X), which is a contradiction, so ■n-1(Nr)

r>£_(X) = 0 which implies ir~l(Nr)E [$-(X)]°.

The following proposition is due to B. Yood [9, p. 600 ].

Proposition 3.2. Let X be any Banach space. Then TE&+(X) if

and only if given a bounded set EinX which is not totally bounded, then

T(E) is not totally bounded.

Let Sx denote the closed unit ball of X.

Lemma 3.3. v~^(Nl) E [*+(*) ]•.

Proof. Suppose TEir-^N^r^^X), then TE^-^N') if and only

if there exists a Q$K(X) such that TQ=WEK(X). Also TE<*>+(X).

Q(Sx) is bounded but not totally bounded, so TQ(Sx) is not totally

bounded by Proposition 3.2. But this implies TQ(£K(X), a contradic-

tion. So T-1(Nl)r\$+(X)=0 which implies ir-l(N')E [$+(X)]c.

R. J. Whitley [8, p. 255] showed that the following Banach spaces

are subprojective:

(i) H; any Hilbert space,

(ii) /,(l^p<oo),

(iii)  Co,

(iv) LP(S, S, p)(2<p< oo); 5= [0, l], (S, tt) Lebesgue measure.

Lemma 3.4. Let X be subprojective. Then T($i&+(X) implies there

exists an infinite-dimensional closed complemented subspace XiEX

and a KEK(X) such that T = K on Xi.

Proof. M. Schechter [7, p. 1142] proved that T$$+(X) implies

there exists a KEK(X) nul(T — K)= oo, in other words T = K on

nul(T-K), an infinite-dimensional closed subspace of X. Therefore

since X is subprojective there exists an infinite-dimensional closed

complemented subspace XiEnul(T — K). So T = K on Xi, as desired.

Theorem 3.5. Let X be subprojective. Then

r-\m = [*+(*)]"■
Proof. By Lemma 3.3, 7r-i(A0C ["M^O?- But if T$$+(X), then

by Lemma 3.4, there exists an infinite-dimensional closed comple-

mented subspace XiEX and a KEK(X) such that T = K on Xi.

Let QEB(X) be the continuous projection of X onto Xi. Q$iK(X),

since if QEK(X) then R(Q) =Xi being closed would imply R(Q) is

finite-dimensional, which would be a contradiction.

Define KiEK(X) by setting K~i = K on Xi and jRTi^O on X2, where
X = Xi®X2. TQ = KiEK(X) and Q<£K(X) implies that tt(T)EN1,

which implies TE^KN1). So [Q+VOYCt-^N1).
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Theorem 3.6. Let X be a reflexive Banach space with X* subprojec-

tive. Then [^(X)]e = ir-1(Nr).

Proof. By Lemma 3.1, r~l(NT)C [$-iX)]c. Take r$$_(Jf), then

by [9, p. 601], T*(fc$+(X*), so by Theorem 3.5 we have that
T*Ett~1 (TV', with respect to X*), in other words there exists a

Q$K(X*) and a K£K(X*) such that T*Q = K.
Let <r be the natural isomorphism of X into X**. cr is onto since X

is reflexive and with this natural identification of X and X**, we

have T** = T. Since iT*Q)* = K* we have that Q*T** = K*. K*E

KiX**) and Q*^K(X**) by Schauder's theorem [2, p. 485], so

this implies that TEtr~1(Nr). Thus we have shown that [*_(X)]e

Ett-KN').

Corollary 3.7. If X = lp (1 <p< 00) or any Hilbert space, then

ia)   [*+(X)]° = irW),
(b) [<S>-iX)]° = Tr~1iN*),and

(c) [*+(X)\J*-(X)]' = ir-i(N),

where N=NT\Nr, the two-sided null divisors of BiX)/KiX).

Proof, (a) follows from Theorem 3.5; (b) follows from Theorem

3.6; and (c) follows from the fact that N=Nl(~\NT implies
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