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Abstract. Let the image in H,k(QP*: Z) =Z of stable homotopy

under the Hurewicz homomorphism be h(k) -Z. Using the Adams

spectral sequence for the 2-primary stable homotopy of quater-

nionic and complex projective spaces it is shown that h{k) is (2k)! if

k is even and is (2k)! /2 if k is odd.

1. Introduction. Let QP°° denote infinite quaternionic projective

space. We prove

Theorem 1.1. For k>0 the stable Hurewicz homomorphism

7rl(QP°°)^P«(QP00;2)SZ

maps onto (2k) I ■ Zfor k even, onto [(2k) !/2 ] • Zfor k odd.

A related result concerns the stable homotopy of complex projec-

tive spaces:

Theorem 1.2. Let CP* denote k-dimensional complex projective space

(2k real dimensions). Let ytk be, as in [l], the generator of a Z2 summand

of 7r8J:+1(50) which is represented in the Adams spectral sequence by

Pkh\. Let 12 denote the integral generator o/tt2(CP4). Then /u„l2 is non-

zero in 7rf„+3(CP4n+1) and is zero in 7rfn+3(CP4n+2).

2. Some standard results. Let y generate 774(QP°°; Z). Let r\ be the

standard quaternionic line bundle over QP°°, 77 — 2 =p.£PJ£/°(QP°°).

Let h(h) be the positive integer such that the image of the stable

Hurewicz homomorphism in TP^QP"; Z)=Z is h(k) ■ Z. Since (cf.

Mosher, [2]) the image of the stable Hurewicz homomorphism in

774t(CPw; Z) =Z is (2k) I ■ Z it is clear that h(k) divides (2k)!. On the
other hand using the fact that ch\i.= ~%2n=i [2yn/n\] it is clear that

(2&)!/2 divides h(k). For k even this last statement can be strength-

ened by a factor of 2 so that (2k)\ divides h(k); one exploits the fact
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that, for k even, the natural reduction map KSp°(Sik)-->KU°(Sih)

is a doubling map. To prove Theorem 1.1 it remains only to show that

for k odd h(k) is (2k) !/2 and not (2k)!.

3. Remarks on ExtA(8*(CPn; Z2), Z2). Let Er(X) denote the rth

term of the Adams spectral sequence for tv%(X; 2), the 2-primary

component of the stable homotopy of X. Er(X) is an Er(S°) left

module and Ef(X) is just Ext#(2?* (X; Z2), Z2) where A is the mod

2 Steenrod algebra.

We filter E2(CPn), ng oo, by setting F2*£2(CPn) to be the image

of £2(CP*) for k<n and £2(CPn) for ktn; Fik+1 = F2k. We may then

choose generators for £2(CPn) denoted by symbols of the form 2kg

so that g is a generator of £^,(_2i:(50) and 2kg is of exact filtration 2k

and comes from an element of A^''(CP*) which under the induced

map of the pinching map CP4—>S2* goes into g-\2k in ES2l(S2k) where

l2k generates £^'2t(524).

We are interested particularly in two sorts of generators in £2(CP"):

(i) The 'Z-towers'; and

(ii) Certain elements of filtration 2 and 4 on the 'top edge'.

The 'Z-towers': A Z-tower is a family of elements h^-b which are

nonzero for all w^O and such that b^h0-b'. There is just one Z-

tower in the 2&-stem of E2(CPX); it consists precisely of the elements

of exact filtration 2k. All of the tower, save for a possible finite seg-

ment at the bottom, persists to £„(CPco) and represents a subgroup

of the integral summand of 7rfs(CP°°; 2). But since multiplication by 2

(or any other element of ir*(5'0; 2)) cannot increase exact filtration this

subgroup of the integral summand turns out to be the entire sum-

mand. We may therefore say that the Z-tower in the 2&-stem of

£2(CP") is generated by a bottom element of the form 2khoW where

d(k) ^k-a(k) and that just those elements of the tower of the form

hZ-nhf* with n^k-a(k)-d(k) will persist to £M(CP°°). Here a(k)

stands for the sum of the digits of the dyadic expansion of k. (Conjec-

ture: If 2a-lSk<2> then d(k) =2*-k-l.)

Since CP°° is an H-space, Er(CP">) and 7r*(CP°°; 2) have product

structures; ir*(CPM; 2)/torsion is a polynomial ring over the integers

(without identity) generated by 12 (cf. [2, Theorem 2.1]). Then for

m, n such that a(m+n) =a(m) +a(n) we must have

,m—aim)—dim) d (m)        n—a {n)—d (n)        ,<*<")..

("0 -2m«0       )("0 -2n«0      )

m+n—a(m+n)—d(m+n) d(m+n)

=   »0 " 2(m+re)«0 ',

in words, the 2w-stem Z-tower times the 2w-stem Z-tower gives the
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2(m-\-n) Z-tower when there is no dyadic carryover in adding m to n.

The proof has been in EX(CPX) but the same is true in Er(CP°°),

r< oo.

The 'top edge': The maps S2-i»CP2A>S4 induce a short exact se-

quence in cohomology and so a long exact sequence

s.t 2    P*      a.t      4     C*        s-t-l.(      2     2*       s4-l,t 2

-+ E2 (CP )^E2 (S ) -+E?   (S )-+E2     (CP ) ->

where d is given by d(g- L) =^ig-l2.

We have well-defined generators

» 4p4-l,12p+4. 2 p—1   3 4p,12n+3, 2.
2P*Ai £ £2 (CP ),        4P    h0h3 E P2 (CP )

for p^l; they are the two 'highest' elements (in value of s) in the

8p + 3-stem of P2(CP2) and their images in £2(CP*), k^ip + l, are

the two highest elements in the 8£> + 3 stem there.

Lemma. In E2(CPk), ho-iPp-lh30h3 = 2Pphi, k^4p + l.

Proof. Write down actual resolutions for k = 2.

4. The main theorems.

Theorem 4.1. If 2« = 4 (mod 8), a(n)=r, n^2, then in Er(CPx),

dr(2nhr0-1)=2P("-»'ihi.

Proof. By induction on r. Let r = 2, (the minimum value)

2w = 2*+4, k^3, and let us examine P*(CPn). We have a long exact

sequence

• • • —> Ei (CP ) —>£2 (S ) —»P2     (CP    ) —> £2     (CP )—»•••.

Suppose there is no nonzero 2„^_3e£S"8,3s_3(CPn). This would

imply 5(^"3-l2«)^0, and then

5(^0     T2n)  = 4P hoh3

and

5(Ao      -l2n)   =   2P hi

and therefore there could be no nonzero element 2nh\~ ££2(CPn);

this is impossible and so, in fact 0^2n^"3G-Er3'3"~3(CPn). But since

in fact this element must be killed by the time we get to £„ we must

have

d2(2nho    )  = 2P «1-
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Now let n be given such that 2n = 4 (mod 8),a(n) =r, n = n' + n" where

«' is the highest power of 2 less than n and, accordingly, a(n") =r — 1.

In £,_i(CP"0 we have that 2n'/zo_1^0 and, by induction, we may

assume that 2n"h\ ~tt±0. Hence 2n^o_r_1^0. There are two possibili-

ties for eliminating 2„h%~T~ ;

(i)   dr+l(2nK-T-l)=iP{h~6)/Xh,

(ii) dr(2nhn0~r-1)=2P(n-2)lihi.

Possibility   (i)   would   imply   however   that  dr^i(2nho T) =2P^-2)lih

which is impossible. We have therefore that 2nhl~T~l persists to Er

where it is killed. This concludes the proof of Theorem 4.1. Theorem

1.2 is an immediate corollary.

Let us now consider £*(QP°°) using the same sort of terminology

as before. We wish to show what happens to the Z-tower in the 2n

stem, 2w = 4 (mod 8). Specifically we are interested in knowing

whether 2„ho~T~l persists to £„, r=a(n). We know that 27!/?o~r_1 is

nonzero in £r(CP°°) and so also in £r(QP°°). But in Er(QP<°) this

element is trapped, there being no element 2P<-n~2)l4hi to send 2nK~r~1

into under dr and certainly nothing with higher 5-filtration. We have

proved Theorem 1.1.
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