A NOTE ON PALAIS' AXIOMS FOR SECTION FUNCTORS

R. C. RIDDELL

ABSTRACT. By a slight strengthening of one axiom, a technical slip is corrected in R. S. Palais' proof of a basic lemma on functors from vector bundles over compact manifolds to Banach spaces of sections.

For each compact n-dimensional C^{∞} manifold M, possibly with boundary, let VB(M) denote the category of (finite dimensional real) C^{∞} vector bundles and C^{∞} vector bundle maps over M, and for each ξ in some VB(M), let $S(\xi)$ and $C^{\infty}(\xi)$ denote respectively the real vector spaces of all sections and of all C^{∞} sections of ξ . In [1], R. S. Palais studies ways of assigning to each such ξ a Banachable space $\mathfrak{M}(\xi)$ which obeys

$$C^{\infty}(\xi) \subset \mathfrak{M}(\xi) \subset S(\xi)$$

and certain other requirements, of which the first two are as follows [1, pp. 9-10]:

AXIOM (B§1). For each M, \mathfrak{M} is a functor from VB(M) to the category of Banachable spaces and continuous linear maps.

AXIOM (B§2). If $\xi \in VB(N)$ and if $\phi: M \to N$ is a diffeomorphism of M into N, then $s \mapsto s \circ \phi$ defines a continuous linear map of $\mathfrak{M}(\xi)$ into $\mathfrak{M}(\phi^*\xi)$.

From these properties he immediately deduces the fundamental

"MAYER-VIETORIS" THEOREM. Let M_1, \dots, M_r be compact C^{∞} submanifolds of M whose interiors cover M, and let $\xi \in VB(M)$. Define

$$\widetilde{\mathfrak{M}}(\xi) = \left\{ (s_1, \cdots, s_r) \in \bigoplus_{i=1}^r \mathfrak{M}(\xi \mid M_i) : s_j \mid M_k = s_k \mid M_j \right\}.$$

Then the map $F: \mathfrak{M}(\xi) \to \widetilde{\mathfrak{M}}(\xi)$ defined by $s \mapsto (s \mid M_1, \dots, s \mid M_r)$ is an isomorphism of Banachable spaces.

Unfortunately this theorem is false: F need not be surjective, as is shown by the example below. In the proof [1, pp. 10-11], Palais

Received by the editors December 24, 1969.

AMS Subject Classifications. Primary 5730, 5750.

Key Words and Phrases. Banach spaces of sections, section functors, Mayer-Vietoris theorem.

¹ Also pointed out by David Ragozin.

denotes by $\{\phi_i\}$ a partition of unity subordinate to the cover $\{\text{interior } M_i\}$. Given $(s_1, \dots, s_r) \in \widetilde{\mathfrak{M}}(\xi)$, he argues from (B§1) that $\phi_i s_i \in \mathfrak{M}(\xi | M_i)$, and claims that extending $\phi_i s_i$ to \overline{s}_i on M by setting it equal to zero off M_i defines \overline{s}_i in $\mathfrak{M}(\xi)$. This claim is false; there is no guarantee that $\mathfrak{M}(\xi)$ is large enough to contain \overline{s}_i , and the appeal [1, p. 11, top] to the previous Localization Theorem 4.1 is invalid, since its hypotheses cannot be verified in the case at hand.

However, the "Mayer-Vietoris" Theorem is true if Axiom (B§2) is strengthened to require that $s\mapsto s\circ\phi$ map $\mathfrak{M}(\xi)$ onto $\mathfrak{M}(\phi^*\xi)$, not just into. Indeed, given $(s_1,\cdots,s_r)\in\widetilde{\mathfrak{M}}(\xi)$, first extend each s_i to $t_i\in\mathfrak{M}(\xi)$ by the "onto" assertion of the strengthened (B§2). Then set $\bar{s}_i=\phi_it_i\in\mathfrak{M}(\xi)$, $s=\bar{s}_1+\cdots+\bar{s}_r\in\mathfrak{M}(\xi)$, and retrace Palais' proof that $F(s)=(s_1,\cdots,s_r)$.

As Palais remarks [1, p. 10], all "natural" examples of \mathfrak{M} obey the "onto" form of (B§2), so the flaw noted here in no way impairs the theory developed in [1]. In particular, one has the functors $\mathfrak{M} = C^k$ (i.e., k-times continuously differentiable sections with the usual C^k -topology).

To see that the "into" form of (B§2) is not sufficient, consider the following "unnatural" choice of \mathfrak{M} . If dim M=1, the connected components of M are diffeomorphs of the closed interval D^1 and the circle S^1 . Write M_c (respectively M_n) for the disjoint union of the contractible (noncontractible) components of M, so that M= disjoint union $M_c \cup M_n$. Now for any M, if $\xi \in VB(M)$, set

$$\mathfrak{M}(\xi) = C^0(\xi \mid M_c) \oplus C^1(\xi \mid M_n) \quad \text{if dim } M = 1,$$
$$= C^1(\xi) \quad \text{if dim } M \neq 1.$$

Trivially \mathfrak{M} obeys (B§1), and the only doubt about (B§2) is in the case when dim M=1. Consider diffeomorphisms ϕ of M into N. Since components are carried into components, we need consider only connected M and N. If M=N ($=D^1$ or $=S^1$), Axiom (B§2) is satisfied, as noted above, even in the "onto" form. If $M=S^1$, $N=D^1$, there are no such ϕ . If $M=D^1$, $N=S^1$, then $s \in C^1(\xi)$ "restricts" to

$$s \circ \phi \subset C^1(\phi^*\xi) \subset C^0(\phi^*\xi) = \mathfrak{M}(\phi^*\xi),$$

and the map $s \mapsto s \circ \phi$ is continuous since the C^1 -topology is stronger than the C^0 . Note that the map $s \mapsto s \circ \phi$ is decidedly not onto $\mathfrak{M}(\phi^*\xi)$, so this \mathfrak{M} obeys only the "into" form of (B§2). And now the "Mayer-Vietoris" Theorem obviously fails, e.g. for the case $M = S^1$, M_1 and $M_2 = \text{submanifolds diffeomorphic to } D^1$.

Finally, we observe that the local equivalent of $(B\S2)$, namely Axiom $(B\S2')$ on p. 12, should also be changed to the stronger "onto" form.

REFERENCES

1. Richard S. Palais, Foundations of global non-linear analysis, Benjamin, New York, 1968.

University of British Columbia, Vancouver 8, B. C., Canada