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Abstract. By a slight strengthening of one axiom, a technical

slip is corrected in R. S. Palais' proof of a basic lemma on functors

from vector bundles over compact manifolds to Banach spaces of

sections.

For each compact w-dimensional C°° manifold M, possibly with

boundary, let VBiM) denote the category of (finite dimensional real)

Cx vector bundles and C vector bundle maps over M, and for each £

in some VBiM), let 5(£) and Cx(£) denote respectively the real vector

spaces of all sections and of all C°° sections of £. In [l], R. S. Palais

studies ways of assigning to each such £ a Banachable space 3TC(£)

which obeys

c-tt) £ arc® £ 5©

and certain other requirements, of which the first two are as follows

[1, pp. 9-10]:
Axiom (B§1). For each M, 3TC is a functor from VB(M) to the

category of Banachable spaces and continuous linear maps.

Axiom (B§2). If ££ VB(N) and if 0: M-+N is a diffeomorphism of

M into N, then s\—>so0 defines a continuous linear map of 3TC(£)

into 911(0*£).

From these properties he immediately deduces the fundamental

"Mayer-Vietoris" Theorem. Let Mi, ■ ■ ■ , MT be compact C°°

submanifolds of M whose interiors cover M, and let ££ VB(M). Define

3TC(f) =  {(*» • • ■ ,*r) £© 3K({| Mt):sj\ Mk = sk\ mX .

Then the map F: 9TC(£)—>3TZ(£) defined by si—>(s| Mi, ■ ■ ■ , s\ Mr) is an

isomorphism of Banachable spaces.

Unfortunately this theorem is false:1 F need not be surjective, as

is shown by the example below. In the proof [l, pp. 10-11 ], Palais
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1 Also pointed out by David Ragozin.
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denotes by {<bi} a partition of unity subordinate to the cover

{interior Mi}. Given (51, • • • , 5r)G9TC(ir), he argues from (B§1) that

#iSjG9TC(£| Mi), and claims that extending cpiSi to Si on M by setting

it equal to zero off M,- defines Si in 3TC(£). This claim is false; there is

no guarantee that 9TC(i;) is large enough to contain $,-, and the appeal

[l, p. 11, top] to the previous Localization Theorem 4.1 is invalid,

since its hypotheses cannot be verified in the case at hand.

However, the "Mayer-Vietoris" Theorem is true if Axiom (B§2)

is strengthened to require that st—>5 o <p map 2fll(£) onto 9Tl(<£*|), not

just into. Indeed, given (si, ■ ■ ■ , sr)G9Tl(£), first extend each Si to

/iG9TC(£) by the "onto" assertion of the strengthened (B§2). Then

set s,=<£i/,G9TC(£), 5 = 5i+ • • • +srE^l(0< and retrace Palais' proof

that F(s) = (su ■ ■ ■ , sr).

As Palais remarks [l, p. 10], all "natural" examples of 311 obey the

"onto" form of (B§2), so the flaw noted here in no way impairs the

theory developed in [l]. In particular, one has the functors 3TC = C*

(i.e., &-times continuously differentiable sections with the usual

C*-topology).

To see that the "into" form of (B§2) is not sufficient, consider the

following "unnatural" choice of 3TC. If dim M= 1, the connected com-

ponents of M are diffeomorphs of the closed interval Dl and the circle

Sl. Write Mc (respectively Mn) for the disjoint union of the contract-

ible (noncontractible) components of M, so that M = disjoint union

MAJMn. Now for any M, if £G VB(M), set

9TC($) = C°(i. I Mc) © Cl(i. I M»)    if dim M = 1,

= C1^)    if dim M ^ 1.

Trivially 3TC obeys (B§1), and the only doubt about (B§2) is in the

case when dim M=\. Consider diffeomorphisms <p of M into N. Since

components are carried into components, we need consider only

connected M and N. If M = N ( = Dl or =5X), Axiom (B§2) is satis-

fied, as noted above, even in the "onto" form. If M = S1, N = D1, there

are no such <p. If M = D\ N = S\ then sEC1^) "restricts" to

so<pE CW) C C°(4>*£) = 3U(**f),

and the map 51—>s o 0 is continuous since the C'-topology is stronger

than the C°. Note that the map st-^s o 0 is decidedly not onto 9rc(</>*£),

so this 9H obeys only the "into" form of (B§2). And now the "Mayer-

Vietoris" Theorem obviously fails, e.g. for the case M=S1, Mi and

Af2 = submanifolds diffeomorphic to D1.
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Finally, we observe that the local equivalent of (B§2), namely

Axiom (B§2') on p. 12, should also be changed to the stronger "onto"

form.
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