## ON THE EXISTENCE OF $L_{\infty \kappa}$ -INDISCERNIBLES

P. C. EKLOF

ABSTRACT. It is proved that if T is a countable theory of  $L_{\omega_1\omega}$  with enough axioms for Skolem functions and with arbitrarily large models, then for any order type, there is a model of T with a set of  $L_{\infty K}$ -indiscernibles of that order type.

In this short note we answer in the affirmative a question of Chang [4] as to whether there exist  $L_{\kappa\kappa}$ -indiscernibles of any given order type. In fact we prove a somewhat stronger result since we show the existence of  $L_{\kappa\kappa}$ -indiscernibles and we use a stronger definition of indiscernibles. Our result also gives a simpler proof of Chang's theorem on the existence of  $L_{\kappa\kappa}$ -indiscernibles of any well-ordered order type [4, Theorem 4]. (We thank Jon Barwise for some helpful discussions.)

In general we follow the notation of Chang [4] (so  $\kappa$  is always an infinite regular cardinal). Let L be a first order language with countably many relation, function, and constant symbols, and let  $\mathfrak{A} = \langle A, \dots \rangle$  be a structure for L. An ordered subset X of A is said to be  $L_{\lambda\kappa}$ -indiscernible if for any subset Y of X of cardinality  $<\kappa$  and any order-preserving injection  $h: Y \to X$ ,

$$(\mathfrak{A}, y)_{y \in Y} \equiv \lambda_K (\mathfrak{A}, hy)_{y \in Y}.$$

If  $L_{\infty x}$  is the union of the infinitary languages  $L_{\lambda x}$ , where  $\lambda$  ranges over all cardinals, we define  $L_{\infty x}$ -indiscernibles analogously.

Let T be a countable theory of  $L_{\omega_1\omega}$ . There is a countable fragment  $\mathfrak{L}_A$  such that  $T \subseteq \mathfrak{L}_A$  (for the definition of  $\mathfrak{L}_A$  see Barwise [1]). We consider only T and  $\mathfrak{L}_A$  such that  $\mathfrak{L}_A$  has enough function symbols and T includes axioms for all Skolem functions of formulas of  $\mathfrak{L}_A$ . A necessary condition for T to have models with sets of  $L_{\infty\kappa}$ -indiscernibles of any order type is that T have models of arbitrarily large cardinality; this is sufficient as well.

THEOREM. Let  $T \subseteq \mathcal{L}_A$  such that T has arbitrarily large models. If  $\mu$  is any order type, there is a model  $\mathfrak A$  of T such that  $\mathfrak A$  has a set of  $L_{\infty \kappa}$ -indiscernibles of order type  $\mu$ .

PROOF. We may suppose that the cardinality  $|\mu|$  of  $\mu$  is  $\leq \kappa$ , since a set of  $L_{\infty \lambda}$ -indiscernibles is a set of  $L_{\infty \kappa}$ -indiscernibles if  $\lambda \geq \kappa$ . Sup-

Received by the editors December 7, 1969.

AMS Subject Classifications. Primary 0235.

Key Words and Phrases. Indiscernibles, infinitary languages,  $\eta_{\alpha}$ -set.

pose  $\kappa = \aleph_{\alpha}$ ; it suffices to prove that T has a model  $\mathfrak{A}$  with a set X of  $L_{\infty\kappa}$ -indiscernibles of order type  $\eta_{\alpha}$ , since  $\mu$  can be embedded in X [7, pp. 334-338].

We are assuming that models of T have Skolem functions for all formulas of  $\mathfrak{L}_A$ . Since T has arbitrarily large models, there is a model  $\mathfrak{A}$  of T with a set X of  $\mathfrak{L}_A$ -indiscernibles of order type  $\eta_{\alpha}$  (see [6]; if  $\mathfrak{L}_A = L_{\omega\omega}$  this is just the classical result of Ehrenfeucht-Mostowski [5]). We may suppose that  $\mathfrak{A} = \mathfrak{H}(X)$ , where  $\mathfrak{H}(X)$  is the Skolem hull of X (i.e. the submodel of  $\mathfrak{A}$  whose universe A is the closure of X under the Skolem functions of  $\mathfrak{L}_A$ ).

We claim that X is a set of  $L_{\infty\kappa}$ -indiscernibles in  $\mathfrak{A}$ . Let  $Y \subseteq X$  be of cardinality  $\langle \kappa = \aleph_{\alpha}$  and let  $h \colon Y \longrightarrow X$  be an order-preserving injection. Let I be the set of all isomorphisms

$$f:S \to S'$$

of submodels S, S' of  $\mathfrak A$  such that  $Y \subseteq S$ ,  $f \mid Y = h$ , and there exist U,  $U' \subseteq X$  such that  $\mid U \mid < \kappa$ ,  $S = \mathfrak S(U)$ ,  $S' = \mathfrak S(U')$  and  $f \mid U$  is an order-isomorphism of U onto U'. Notice that  $I \neq \emptyset$  since, letting  $S = \mathfrak S(Y)$ ,  $S' = \mathfrak S(h(Y))$ , there is an extension of h to an isomorphism  $f: S \rightarrow S'$ . We claim that I has the following property:

(\*) For any 
$$C \subseteq A$$
 such that  $|C| < \kappa$  and any  $f \in I$ , there are  $f'$ ,  $f'' \in I$  such that  $f \subseteq f'$ ,  $f \subseteq f''$ ,  $C \subseteq$  domain of  $f'$ , and  $C \subseteq$  range of  $f''$ .

It suffices to prove (\*), for it follows easily by an induction on formulas of  $L_{\infty^{\kappa}}$  that

$$(\mathfrak{A}, y)_{y \in Y} \equiv_{\infty \kappa} (\mathfrak{A}, hy)_{y \in Y}$$

(see Calais [2]).

So suppose  $f: S \rightarrow S'$  is in I and U, U' are as in the definition of I. Given  $C \subseteq A$ ,  $|C| < \kappa$ , there is a  $D \subseteq X$ ,  $|D| < \kappa$ , such that  $C \subseteq \mathfrak{F}(U \cup D)$ . It is clear that in order to prove the existence of f' as required by (\*), it suffices to show that we can extend  $f|U:U \rightarrow U'$  to an order-monomorphism:  $U \cup D \rightarrow X$ . We may assume  $D \cap U = \emptyset$ . Define an equivalence relation on D by:  $x \approx y$  iff x and y determine the same cut of U. Write  $D = \bigcup_{\sigma < \tau} D_{\sigma}$  as the union of pairwise disjoint equivalence classes  $D_{\sigma}$ ,  $\sigma < \tau < \kappa$ . For any  $\sigma < \tau$ , let  $U = A_{\sigma} \cup B_{\sigma}$  where  $A_{\sigma} < D_{\sigma} < B_{\sigma}$ . Then  $f(A_{\sigma}) < f(B_{\sigma})$  and  $|f(A_{\sigma})| < \kappa$ ,  $|f(B_{\sigma})| < \kappa$ . So if

$$E_{\sigma} = \{x \in X : f(A_{\sigma}) < x < f(B_{\sigma})\},\,$$

800 P. C. EKLOF

 $E_{\sigma}$  is an  $\eta_{\alpha}$ -set. Therefore there exists an embedding

$$g_{\sigma}: D_{\sigma} \to E_{\sigma}.$$

Define  $f': U \cup D \to X$  by: f'(x) = f(x) if  $x \in U$ ;  $f'(x) = g_{\sigma}(x)$  if  $x \in D_{\sigma}$ . This gives the desired extension of f. In a similar manner we can prove the existence of f'' extending f with  $C \subseteq \text{range}$  of f''. This completes the proof.

REMARKS. (1) If we assume the generalized continuum hypothesis then the proof is much simpler; for then there exists an  $\eta_{\alpha}$ -set X of cardinality  $\aleph_{\alpha}$ . Hence if  $h: Y \rightarrow X$  is an order-preserving injection and  $|Y| < \kappa$ , h extends to an isomorphism  $h': X \rightarrow X$ . It is immediate that

$$(\mathfrak{A}, y)_{y \in Y} =_{\infty^K} (\mathfrak{A}, hy)_{y \in Y}.$$

(Compare the remark of Chang [3, p. 55].)

- (2) Our method suffers from the same defect as that of Chang, namely the indiscernibles do not necessarily generate the model.
- (3) If  $\kappa = \aleph_{\alpha}$  and  $\kappa \ge |\mu|$  the model  $\mathfrak{A}$  asserted to exist in the statement of the theorem can be chosen to have cardinality  $= 2^{\aleph_{\beta}}$  if  $\alpha = \beta + 1$ ;  $\sum_{\sigma < \alpha} 2^{\aleph_{\sigma}}$  if  $\alpha$  is a limit ordinal [7].

## REFERENCES

- 1. J. Barwise, Infinitary logic and admissible sets, J. Symbolic Logic 34 (1969), 226-252.
- 2. J.-P. Calais, La méthode de Fraissé dan les langages infinis, C. R. Acad. Sci. Paris 268 (1969), 785-788.
- 3. C. C. Chang, "Some remarks on the model theory of infinitary languages," The syntax and semantics of infinitary languages, Lecture Notes in Math., no. 72, Springer-Verlag, Berlin and New York, 1968, pp. 36-63.
- 4. ——, "Infinitary properties of models generated from indiscernibles," *Logic, methodology and the philosophy of science*. III, North-Holland, Amsterdam, 1968, pp. 9-21.
- 5. A. Ehrenfeucht and A. Mostowski, Models of axiomatic theories admitting automorphisms, Fund. Math. 43 (1956), 50-68. MR 18, 863.
  - **6.** J. Keisler, Model theory of  $L_{\omega_1\omega}$ , (to appear).
- 7. K. Kuratowski and A. Mostowski, Set theory, PWN, Warsaw and North-Holland, Amsterdam, 1968. MR 37 #5100.

YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520