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Abstract. A class of linear sets investigated by Besicovitch and

Taylor is related to the critical set of differentiable mappings of a

specified degree of smoothness. An example is constructed to show

that certain results on Hausdorff measure are nearly best-possible.

Let F be a compact set of real numbers and [a, b] the smallest

interval containing F. The complement [a, b]~F is composed of a

countable sequence of disjoint open intervals, of lengths /». We

investigate sets F of Lebesgue measure 0 with the property that

2Jln< °° for some c in (0, 1). These sets were considered by Besico-

vitch and Taylor in [l] but our theorems are in a different direction.

We require a class of functions O3 defined for each number 8>l:

a real function / on an interval is of class C" provided it is n times

continuously differentiable, where n<B^n-\-l, and Dnf is of class

Lip^~n. When 8 = n-\-l this conflicts with the usual definition of Cn+1,

but no confusion is to be expected; in fact by allowing a larger class

Cn+1 we obtain a slightly sharper result.

Theorem 1. 7,e/ / belong to CB, let Z be the zero-set of Df, and let

F=f(Z). Then F has Hausdorff l/B-measure 0, and the lengths ln fulfill
the condition ^ ^/ff < °° •

Theorem 2. Conversely, let F be a compact set of Lebesgue measure

0, whose contiguous intervals fulfill the convergence condition above.

Then F=f(Z) for some function f in C" for which Df^O and whose zero-

set Z has Lebesgue measure 0. When 8 = n-\-l,f can be made n +1 times

continuously differentiable.

Notation. The diameter of a set E is written | E\, and its Lebesgue

measure m(£). The modulus of continuity of a function/ on a set T

is defined for u > 0 as

w{u) = sup I fih) - fih) I : | h - h | ^ u.

Then w(m)«wc defines the class Lipc, 0<c^l.

1. The proof of Theorem 1 is largely a variant of Taylor's theorem,
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the object being to exploit the extra information on the highest-order

derivative.

Lemma 1. Let f be k times continuously differentiable on an interval

[c, d ] and let Df, ■ • • , Dhf vanish at least once in the interval. Then

/i d /• d—c

| Df(t) \dt^(d- c)*-1 I       w(u)du,
c J 0

where w is the modulus of continuity of Dkf.

Proof. For k = 1 and Df(£) = 0, c ̂ ^d, we have

/» d /» £—c /» d— $ /» d—c

| Df(t) | dt g  I       +1       w(u)du ̂   J       w(u)du.

Assuming the truth of the lemma for £ — 1^1,

/» d /* d—c

| £>2/(0 | dt g (<2 - c)*~2 I       w(m)Jm.

Because Df has a zero in [c, d], \Df\ g/* | D2f(t)\dt and the lemma

follows from this.

To prove Theorem 1, we observe first that each interval I'= (/i, /2)

contiguous to /(Z) has the form /(/) for some interval / contiguous

to Z. Indeed, let siG/_1(^i) ar,d s2Ef_1(t2) be so chosen that |si —s2|

attains its minimum value. Then the interval J between si and s2 is

mapped into I, and therefore onto I. Thus it is sufficient to prove that

2^|/(/)| 1/3< °°, where the summation is extended to intervals J

contiguous to Z.

First, let Z' be the derived set of Z and let / have at least one end

point in Z'. Then Df, ■ • ■ , Dnf vanish there and by Lemma 1

/i f \J\
Df\ ^ | /I""1 I      w(u)du« |/|".

j ^ o

To treat the isolated points in Z, let / be an interval contiguous to

Z', so that if / meets Z then JC\Z is discrete. Thus JC\Z can be

enumerated • • • <z_i<z0<zi < • • • , and we must estimate the

sum • • • +\f(zi)—f(z0)\ 1/3+ • • • . The sequence z_i<z0<Zi< • • •

can be arranged into disjoint blocks of exactly n + 1 terms, with a

possible remainder of at most n terms. By Rolle's Theorem we know

that D2f, • • • , D"f each have zeros on any interval [z,-, z<+„], whence

f'i+n \Df\ <Jc|zi+„— z,|". The same estimate can be made for the

remainder allowed before, because one of the extreme terms is suc-

ceeded immediately by an element of Z'. Applying the inequality
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±x?^in+l)^(±x\'\
o \   o      /

we find that

•••+ \M)-M)\w+ •• ■« |/|.

The estimation given applies to all but 2re intervals situated en-

tirely to one side of Z', and the proof is complete. (The possibility

that Z' = 0 makes the last remark necessary.)

That F has Hausdorff l//3-measure 0 is proved very simply in [l],

but we present a less elementary proof for a stronger conclusion.

Lemma 2. Let f 6e absolutely continuous on an interval [c, d] and let

J a | Df\ = Ofor a closed subset AQ[c, d]. Suppose that for every interval

J contiguous to A,

I   | Df\ « | J |"   for a certain real number 8 > 1.

Then f (A) is contained in o(N) intervals of length N~&, N—>+ ».

Proof. We shall replace / by a function g that coincides with / on

A, and is again absolutely continuous. To do so we define Dg on the

intervals J so that/? Dg =Jj Df. Thus, when J=(h, t2), set

Dg(s) = c(s - hy-1,    h<s ^ i(h + '2),

Dgis) = cit2 - 5)"-1,    Hh + t2) <s <t2

for a constant c. Then in fact

c = 2f>-\t2 - h)-f>(f(h) ~f(h)) « I,

whence

£>gO):«I(dist(5, A)Y~\

Let In denote any of the intervals [kN~l, (& + l)./V-1] that meet A,

so thatf(A)=g(A)Q\Jg(IN). On each IN we have \Dg\«N^, so

that |/(7tf) I «iV-/s. Of course, the number of intervals 7^ is 0(N).

Fixing a number e<l we divide the intervals In into two classes.

(i) m(INC\A) > (1 — e)N~x. In this event every point of In is within

eN_1 of A, and this allows us to introduce a factor e"-1 into the previ-

ous estimate of |g(7jv)|, still preserving the number of intervals In-

(ii) m(INC\A) ^(l—e)N~1. Let us write vn for the number of the

intervals, and vN for the number treated in (i). Then m(A)^N~lvN

+ (l—€)N~lvN.  But because A  is  closed, VN+vN = Nm(A)+o(N),
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hence vu = o(N). Lemma 2 is an easy consequence of this fact and the

estimate given in (i).

To obtain the result on the l//3-measure of f(Z) we select A =Z'

and note that Z~Z' is countable. It is worth remarking that if Df^ 0

and m(Z) =0 then/ is strictly monotone and f(Z~Z') is the set of

isolated points oi f(Z).

2. In this section we suppose that F is a set described in The-

orem 2. Let g be absolutely continuous on [a, b]^F, and linear on

each contiguous interval /, with derivative | j\ 1^_1. The mapping

inverse to g, say h, is increasing and continuous because Dg > 0 almost

everywhere. But h is also absolutely continuous because it maps each

(Lebesgue) null set onto a null set. Thus F is subject to the previous

lemma, since | g(J) \ =\j\ I"3 and m(g(F)) = 0.

In the proof of Theorem 2 we keep the function h, but regard it

solely as a mapping of g(F) onto F. We now extend h to a mapping of

class C^. Let x be a function in C°° [0, 1 ],

x(0) = 0,       x(D = 1,       DX > 0 on (0, 1),       Dkx(0) = D*X(D = 0,

1 g * < oo.

On each interval (h, t2) contiguous to g(F) we define

f(s) = h(h) + (t2 - tiYxi \s-h\ Ht2 - h)),       h<s < t2.

Then fih+)=hiti), fit2-)=hik) + it2-tiy = hit2). When l^ife<oo,

D*fis) = ih - tiY-«D«xi \s-h\ Hh - h)).

In particular the &th derivative of/, on the complement of g(F), is

uniformly bounded for l^j&^SjS.

Now / is absolutely continuous, for it is monotone-increasing and

continuous, and preserves null sets. Hence its derivative is given by

Df (extended to all of hi\a, b]). Also, the functions Df, ■ • • , £»"-1/

are continuous on h[a, b], vanish on hiF), and have uniformly

bounded derivatives on the complement of hiF). It follows that each

is the derivative of its predecessor; for the same reasons Dnf is the

derivative of Dn~xf, and/is n times continuously differentiable. From

the formula for D"f, it vanishes continuously on hiF), and when

B<n + 1, Dnf satisfies a Lipschitz condition of order B — n, on the

contiguous intervals. From these facts the Lipschitz condition for

all of hi[a, b]) is easily deduced.

To improve this result for B = n + 1, we proceed as follows. Writing

h^h^ ' • • s=l»^ • • ' for the lengths of intervals 7„ complementary

to   F,   we   find   numbers   Kci<c2< • • • <c„—>+oo   such   that



888 ROBERT KAUFMAN [August

2~l(c"ln)llff< c°. We then modify the function g, so that 7n is mapped

onto an interval of length (c„l„)llB. The function h inverse to g is also

modified and so ultimately is the function/ (constructed with the aid

of the auxiliary mapping %)• We consider in detail this function,/.

Writing (/i, t2) for the transform by g of the interval 7„, we have

t»=k+   (CJn)W,

fis)  = Kh) + Fn  ih ~ hf xi | S - t2 | /it2 - h)),     h<S < t2,

D"+1f(s) = c~nDn+\i\ s - t2\/it2 - h)).

Since the factor c~l converges to 0 with the length of the interval

ih, t2),f belongs to the conventional class Cn+1.

3. In this section we show that the vanishing of the l//3-measure

of f(Z) cannot be strengthened very much. Let q be a function on (0,

=o) such that qit) and tllB/q(t) are increasing, 2^ii 2(2~m) < °° •

Theorem 3. There exists a function f satisfying the conditions of

Theorem 1, for which f = FiZ) has positive Hausdorff measure with

respect to the function (pit) = tUB/q(t).

Choosing qit) = log2(2_l) for small t, we find that FiZ) can have

dimension l/B.

Proof. Without loss of generality we can suppose 2li q(2~m)<l.

In each dyadic interval [k2~m, (£ + l)2_m]c; [0, l] we construct an

interval centered at (&+§)2-m, of length 2_mg(2-m). We remove all

intervals defined for m = l, then all intervals defined for m — 2 save

those intersecting an interval already removed, and so on. The

disjoint intervals selected form an open set Wof measure miW)<l.

Let 7>/ = 0 on Z=[0, l]~W, and on an interval 7 of W, let Df

= 11\ B~1. Then /(Z) is a set 7", since the contiguous intervals have

lengths | 7| e corresponding to the components 7 of W.

Observe next that if 5i<52 and 5i,52£Z, the fis2) —/(ji)

^>is2 — Siyq0is2 — Si). Indeed (si, s%) contains a dyadic interval

[k2~m, (Jfe + l)2-m], with 2-mtHs2 — 5i). The interval constructed in

[k2~m, ik + l)2~m] either belongs to W, or intersects a larger interval

contained in W, of length ^2-mg(2-m)^>(52 — Si)qis2— s{). In any case

an interval of that length belongs entirely to Wf~\isi, s2), whence the

lower bound on/(52)—/(5i).

Let p. be the measure of Borel sets E defined by

piE) = miZr\f-\E)),   p(f(Z)) = m(Z) > 0.

The proof will be completed by showing that p,(I)<<i<p(\l\) for all



i97o] REPRESENTATION OF LINEAR SETS AS CRITICAL SETS 889

intervals I. Now I contains a subinterval Jo with end points in/(Z),

such that fi(I0) = p-(-0. and of course cp(\ Ia\) g<p(| l\).

Let 70 =/(/), for an interval / contiguous to W. Then p.(I0) ^ | J\,

while |/o|»|/|V(M)- Thus

M(/.) « I /o I'"M | / | ) « | h \l»M Uo | ),

because  |/0|«|j|-

Related questions in Euclidean space have been treated by Sard

in [2].
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