CONULLITY OF OPERATORS ON SOME FK-SPACES
H.I. BROWN! AND H. H. STRATTON?

AsstrACT. The notion of conullity for a subclass of the algebra
of matrix operators on the space of convergent sequences is well
known in summability theory. In this paper the space of convergent
sequences is replaced by a general (locally convex) FK-space and
the following question is studied: Given a subalgebra of the algebra
of all continuous linear operators on this FK-space, is there a class
of operators in this subalgebra whose behavior is “conull-like”?
The question is answered in the case when the FK-space has a suit-
able (Schauder) basis and also in some other special cases.

1. Introduction. The algebra, T';, of complex matrix operators on
the set ¢ of convergent complex number sequences is partitioned into
two classes: the conull matrices and the coregular matrices. (See,
for example, [1].) The class of conull matrices, denoted by ¢, may
be characterized either as the kernel of the only nontrivial multipli-
cative linear functional on T, ([1]; see also [6]), or as the set {4 €T,:
w'—0 weakly in ¢4 }, where ¢4 denotes the summability field of 4 and
w=e—p s e forr=1,2,---.(Asusual, e=(1,1,1, - - - ) is the
unit sequence and ¢¥=(0, - - -, 0,1,0, - - ) is the sequence having
a 1 in the kth coordinate and zeros elsewhere.) Since the kernel of a
multiplicative functional is an ideal, the first characterization dis-
plays an algebraic likeness between the set of conull matrices and the
zero matrix (in the sense that Ay Cy¢ and ¥4 Cy for each 4 in T,
just as A{0} {0} and {0}4Z{0}, where 0 denotes the zero
matrix). The second characterization displays a topological likeness
between ¢ and the zero matrix (because w—0 weakly in s, the set of
all complex number sequences, and s is the summability field of the
zero matrix). In this paper we replace ¢ by a more general (locally
convex) FK-space N and we replace I'; by the set I'y of matrix opera-
tors on A. We then consider the following question: Given an algebra
A which contains Ty and which is contained in the set B[\] of all
continuous linear operators on A, is there a class of operators in A
whose behavior is “conull-like”? By “conull-like” we will mean that
the class resembles the zero matrix in both an algebraic and a topo-
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logical sense. In order to make this more precise we first give an
equivalent reformulation of the second characterization of ¥.

Recall that if AET, and f&c¢), the dual space of ¢4, then f has
representation® [4, p. 230]

J(x) = g(42) + 22 Bem,
k
where g is a continuous linear functional on ¢ and > x |B:| <. But

lim Y Buwr =lim > B =0
T k r k=r+1
and so w™—0 weakly in ¢4 if and only if Aw™—0 weakly in ¢. Thus,
¥ may be characterized as being precisely the set

{4 € T.: 4w — 0 weakly in¢, as 7 — o }.

(Notice that this equivalent reformulation also displays a topological
likeness between ¢ and the zero matrix in the sense that it shows that
each 4 in ¢ maps a sequence, each of whose elements is at a distance
of one from the zero sequence, into a weakly convergent to zero
sequence.)

Now let N\ be an FK-space, {x':r=l, 2, } a subset of \, and
A a subalgebra of B[\] which contains I'x. Furthermore, let

(A, z7,A) = {A € A:Ax" — 0 weakly in A, as 7 — o }.

We say that “{x7} in X acts like {w’} in the sense of Wilansky,” and
write x"~N\, if *—0 in s but x™+0 weakly in \. (See [5, p. 90].) We
can now make precise what we mean by “conull-like” by reformulat-
ing our original question as follows: given A and A, does there exist
a subset {x'} of X such that x”~X\ and such that (A, x7, N\) is a proper
ideal in A? If the answer is affirmative, that is, if x’~X\ and if (A, x7, \)
is a proper ideal in A, then we say that \ s A-conullable in A under
{x7}. For example, ¢ is T';-conullable in T under {w’} because w'~c
and (T, w, ¢) =y is a proper ideal in T..

The zero matrix satisfies a stronger property; namely that 0x*—0
in the topology of A. This motivates the following definition. If
x"~N\ and if the set

(A*, 27, A) = {A E A4z > 0in ) asr — oo}

is a proper ideal in A, then we say that N is A*-conullable in A under
{xr}.

3 Unless otherwise specified, all summations are from 1 to .
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It is clear that for each \, A, and x" in \, (A*, x7, \) is a subset of
A, x, N).

In the course of our work we establish the following results. (All
as yet undefined symbols will be defined in §2.)

(i) If {e'} is a (Schauder) basis for X (for example, if Nis I? (p=1),
¢o, or ), then N is not T'y-conullable in Ty (=B[\]) under {e}.

(i) If {u, et:k=1, 2, - - - } is a (Schauder) basis for A (for ex-
ample, if #=e and \ is either ¢ or v), then (A, 27, N) is always a class of
matrices, where g =u— Y _5_, uze. Furthermore, \ is A-conullable in
A under {z’} if and only if A=T\. In other words, A-conullity of A
under {z'} is, and only is, a matrix notion whenever {u, ¢t} is a basis
for \.

(iii) If N is either ¢ or v, and if X is A-conullable under {x7} in A,
then A=T} and (A, x7, \) = (A, w", N\). That is, A-conullity in either ¢
or 9 is a unique matrix concept.

(iv) m is not A-conullable in any A under any {x’}

(v) IfNisl? (p=1), co, v, ¢, or m, then N is not A*-conullable in any
A under any {x7}. However, if \ is v then the only A and {x7} which
make v A*-conullable in A under {x'} are T, and {w"}; moreover,
T¥, w, v)=(T,, w’, v)=0, where § denotes the set of compact
matrices on v.

Since the set of compact operators in B[\] is always an ideal and
since a compact operator resembles the zero matrix in how it maps
sets, an argument could be made for selecting the set of compact
operators as representing the “conull-like” class of operators. How-
ever, from a summability point of view this is not satisfactory be-
cause conullity is an invariant property, i.e. if 4 is conull and s =Ap
then B is also conull (the case when A =c¢ is very well known), whereas
compactness is not an invariant property. For example, take N to
be v (the set of convergent series) and take A to be the matrix whose
first row is e and whose other entries are zero. Then 4 is a compact
operator on vy and y4 (= {x:AxE*y}) is precisely v. But v is also vy,
where I is the identity matrix which, of course, is not compact.

2. Further definitions and notation. As usual, [? (p=1), m, ¢, co, 7,
and v, respectively, denote the subsets of s consisting of those se-
quences x for which D |x|?< o, supi|as] < o, limy x; exists,
lim; % =0, Zk x converges, and ¥ ka—xk+1 < o0, respectively.
(In the particular case when p=1 we will write / instead of /'.) The
B-dual of an FK-space \, denoted by M5, is the set

A= {B € s; Z Brxi converges for all x € )\} .
k
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By the Banach-Steinhaus Closure Theorem, D_; Bix: defines a mem-
ber of the dual space N’ of N for each BENS. We assume, throughout
this paper, that all FK-spaces contain all the finite sequences and
that the composition of any two members of T’y is given by matrix
multiplication. (This is the case if either {e*} is a Schauder basis for
\, or if Ty is a ring under matrix multiplication and {¢*} is a Schauder
basis for N8.)

All increasing subsequences of positive integers are denoted by
{nk} or, for convenience, by {n(k) } The letter V is reserved for the
matrix (v,:) defined by the set of equations

Vo = 1/n for(n — V)n/2 < k £ nn + 1)/2.

(Throughout this paper all undesignated entries in matrices and
sequences are assumed to be zero.)

Let A be an FK-space. We say that A is:

averaging if, given x ©\ then y EN whenever yy=x:/n for (n—1)n/2
<k<n(n+1)/2;

contractive if, given {k;} and xEN then yEN whenever y;=xxy;

repeating if, given {k;} and x&N then yEN whenever y,=x; for
kiZk<kin;

expansive if, given {k;} and x&N then y&EN whenever yi) =xi.

We remark here that each of the special spaces mentioned earlier
is at least averaging and contractive.

A matrix 4 = (anx) is called:

contractive if, given {k,.} then an xmy=1;

repeating if, given {n‘} then a,;=1 for n;=n<n;y;

expansive if, given {n;} then anu =1

Thus, an FK-space M is averaging if and only if VET,; it is con-
tractive (resp., repeating or expansive) if and only if Iy contains all
contractive (resp., repeating or expansive) matrices.

3. General results. As mentioned above N\ always represents an
FK-space containing the finite sequences, A represents a subalgebra
of B[\] which contains T, and composition in I'y is matrix multipli-
cation.

LEMMA 1. (A, x7, N\) and (A*, x7, \) are left ideals in A.

Proor. Let AE(A, x7, \) and BEA. Then (BA)x"=B(Ax") and,
since B is continuous, B(4x7)—0 weakly in X\. Thus, BAE (A, x7, \).
Similarly, (A*, x7, N) is a left ideal in A.

LEMMA 2. If x"~N\ and if (A, x7, N) is a right ideal in A, then Zk Brxk
—0 for each BEN. A similar result holds if (A¥*, x7, \) is a right ideal in
A.
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ProoF. Let E = (e.x) be the matrix defined by setting e;; =1 and
en =0 if either %1 or E1. Since x'~\, EC(A*, x7, \)C (4, x7, N).
Given any BEMN8, define B = (b,i) by setting by, =0k Then BET, and
EB=B. Hence, if (A* x7, \) (resp., (A, x7, N)) is an ideal, then
BE&(A*, x7, N\) (resp., BE(A, x7, N\)). Moreover, Bx"=¢! > & Bixi and
so f(Bx") =f(e") Dk Bix;—0 for each fEN'. Since we may choose f so
that f(e!) #0 the proof of the lemma is complete.

COROLLARY. If N' =N then N\ is not A-conullable in any A under any

Since M’ =M whenever {¢*} is a basis for \, we see that, in particu-
lar, I? (p=1), co, and 7 are never A-conullable in A under any {x'}

Lemma 3. Let {u, et:k=1, 2, - - - } be a basis for N and let z'=u
— ZLl urek. Then Zk Brzz—0 for each BENA.

PrOOF. If BEN then D i, Bixx—0, asr— o, for each x EN. Thus,
Zk Bzt = Z:=r+l Brur—0, as r— o,

LEMMA 4. Let {u, €%} be a basis for \ and let TEB[\]. Then TETy
if and only if Y x ur(Te*)n converges and equals (Tu), for each n.

(The special case when A=¢ and #=¢ was proved by Wilansky
[6]. Our proof is essentially his and we present it here for the sake of
completeness.)

Proor. If x &N\ then x has the representation x =au -+ Zk aiek for
some unique sequence of scalars ag, au, @3, - - - . Since coordinates are
continuous in \ the representation becomes x =g+ D i (xx —cour)e*.
Thus, for each TEB|N], Tx=ooTu+ D & (xe—aour)Tet and the
proof follows easily from this equation.

THEOREM 1. Let {u, e”} be a basis for N\ and let zr=u— Zf,:l urer.

(i) (A, 27, N), and hence (A*, 27, N), is contained in T\ for each A.

(ii) N 4s Tx-conullable in Ty under {z'}.

(iii) If AT\ then N is neither A-conullable nor A*-conullable in A
under {zr}.

Proor. (i) This is an immediate consequence of Lemma 4 because
if TE(A, 27, \) then (T27),—0, as r— o, for each n.

(ii) Notice first that z"~M\ because there exists fEN’ satisfying
f() =1 and f(e*) =0 for each k. Also, if I denotes the identity matrix
then I (T, 27, A) and so (T, 27, A) =D\

To show that \ is Tx-conullable in T under {2’} it suffices, by Lem-
ma 1, to show that (T'), 27, N) is a right ideal. Thus, let B&E (T, 2", \),
fEN, and AET,. Since Bz'—0 weakly in N\, Y puif(Be*) con-
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verges and equals f(Bu). Hence, the sequence { f(Be¥)} is a member
of M8. (Indeed, if x &N then there exists a scalar «p such that x =ou
+ Dok (te—agur)etr and so  f(Bx)=aof(Bu)+ Dk (xr—aous)f(Be)
= > xxf (Be*).) Thus, if we define F=(f.) by setting fu =f(Be),
then FET\ and FAET,. Let B denote the first row of FA. Then
BEMN and, by Lemma 3, D i Bi2i—0,asr— . But Y xBizi= ((FA)z)h
and since matrix multiplication is composition, ((FA4)z")1=(F(42"))
= > 1 f(Bet)(Az")y=f(B(Az")) =f((BA)z"), so that (BA)z—0 weakly
in . Hence, BAE& (A, 27, \) and so \ is I'x-conullable in T’y under {z’ }

(iii) Without loss of generality we may assume that #;0 for each
j- Now, for each j, define Q= (¢};) by setting ¢/, =u./u; and g% =0
when k#j. Then for each x &\ we have that Qi = (x;/u;)u E\ and so
Q€. Moreover, Qu=u, Qie’=(1/u;)u, and Qiet={0} if k>j.
Therefore, Q’&E (A, 27, N).

Assume that X\ is A-conullable in A under {z’} . Then (A, 27, \) is a
right ideal in A and so QT (u— Y ., ure*)—0 weakly in X, since
Q'TE(A, 27, \) for each TEA. But Qi(Tu)=((Tu);/u;)u, Q(Te*)
= ((T¢*);/uj)uand coordinates are continuousin \; hence, we have that
(Tu);= D i ur(Te*);. Since this holds for each j, Lemma 4 shows that
TET,. This contradicts the hypothesis that I''s2A and so A is not
A-conullable in A under {z'}. A similar argument may be used to
show that A is not A*-conullable in A under {z7}.

THEOREM 2. If N is A-conullable (resp., A*-conullable) in A under
{x’} then, for each AEA, (A, x", N, Ax", N) (resp., (A*, =, N)
C(A*, Ax™, N)). If, in addition, A has a right inverse in A then (A, x7, \)
= (A, 4Ax7, N) (resp., (A%, x7, \) = (A*, Ax", N)).

Proor. For each BE(A, x7, \) and each f&EN we have that
f(B(Ax7)) =f(BA(x7)). Since (A, x7, \) is a right ideal, BAE& (A, x7, \);
hence, B(Ax")—0 weakly in N and so BE (A, Ax", N).

Assume next that A’ is a right inverse for 4 in A and let
B& (A, Ax7, N\). Then BA(x")=B(Ax")—0 weakly in N and so
BAE(A, x7,N\). Since (A, x7, \) is a right ideal, B= (BA)A’E (A, x7, N).
The parenthetical statements are proved analogously.

LEMMA 5. Glven x"Em,r=1, 2, - - -, there exists a contractive matrix
A such that AxEc,r=1,2, - -.

PROOF. Since each 2" Em we may choose {;} (by a diagonalization
process) so that lim; xj, exists for each r. If 4 =(an) is defined by
setting @, x(my=1, then A4 is contractive and Ax"&c for each r.

LEMMA 6. For eachr=1,2, - - -, let yy&c with limy yp=a,. If y*—0
in s and if {rj} is given then there exist a contractive matrix B, a subse-
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quence {r}} of {r;}, and a sequence {v'} of elements in the unit ball of 1
with v~ P—0 in I, as j— o, such that

. ’ ’
By = qwi 4 v" forr; S v < 1

(Recall that wi=e— > }_, €*.)

Proor. Choose k; so that Iyi—all <1/2 for k=%, and then choose
r{ so that ly;(,)l <1/2 whenever r=r{. Having chosen k; and 7/,
choose k;.1>k; so that ly;—ak] <1/27*! for k=kjy1 and 1=Z7r=r/
and then choose 7},,>7/ so that |y;,| <1/27+! whenever =7,

and2=1, 2, - - -, j+1. Then the matrix B = (bat), defined by setting
bixipy=1(=1,2, - --),is contractive and satisfies the conclusion of
the lemma.

LEMMA 7. Let {v"} be a sequence of elements in the unit ball of | such
that v—0 in s. Then there exist {r;}, a contractive matrix B, and a se-
quence of scalars {c.} with sup|c.| <1, such that

Bv = c.e?+ 3y forr; S r <rjy,

where each y* &l and y—0 in I, as r— .

Proor. Choose k; so that Z:=k(l) Ivil <1/2 and then choose 7; so
that [#},,| <1/2 whenever r=r;. Having chosen k; and r;, choose
kjy1>k; so that Z;",WH) |‘vﬂ <1/271 for r=<r; and then choose
ri41>7; so that |x;(i)| <1/271 whenever r2r;.1 and i=1, 2, - - -,
j+1. Then the matrix B=(bu), defined by setting b;; =1
(=1, 2, - ), is contractive and satisfies the conclusion of the
lemma.

LEMMA 8. Given {n:} there exists a contractive matrix A such that
Aer® =ek for each k.

The proof of this lemma is straightforward and so we omit it.

THEOREM 3. Let N\D1I and suppose that whenever {'w’} is a subset of N
then it is a bounded subset of N. Let x*Cm (r=1,2, - - - ) and assume
also that N is contractive and is such that each contractive matrix has a
right inverse in A. Then, if N is A-conullable (resp., A*-conullable) in
A under {x7}, either

(A) x"’ A) = (A) 87" A) (resp'7 (A*’ xf, A) = (A*) ef’ x))

or

(A, 2, M) = (A, @, N)  (resp., (A%, 27, \) = (A*, w", N)).

Proor. We shall only prove the theorem for the case when \ is
A-conullable. The proof for the other case is analogous.
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By Lemma 5 there exists a contractive matrix 4 such that y~
= Ax"Ec for each r, and, by Theorem 2, since 4 has a right inverse
in A, (A, x", \)=(4, y", N\). Notice that y—0 in s because x"—0 in s.
If o, =1im; 9% then there are two cases to consider. Either there exists
{r,~} such that a,;—a 0, as j— ©, or else a,—0, as r—®.

In the first case, by Lemma 6, there exists a contractive matrix B,
a subsequence {rj’ } of {r,-} and sequences v” in the unit ball of / with
v’ (D—0, as j— o, such that By =a,w’+v for r/ <r<rj,;. Hence,
using Theorem 2 (since B has a right inverse in A) we get

(A’ xf, )‘) = (A? yr’ A) = (A’ arw'? + tv” A)?

where r/ r<r/,;. Butv’'®@—0in X (because v”’'?—0in [ and AD! (4,
p. 203, Corollary 1]) and a,¢;,—0, as j— = ; hence, (A, x",\) = (A, w", \).

In the second case we have that a,—0, as r— . Using Lemma 6
and Theorem 2 as in the first case (this time with I+ the given subse-
quence) we again obtain a contractive matrix B and sequences v
such that

(Av X, >‘) = (A’ ¥, )‘) = (Ay By, >\) = (A’ aw + v, >‘)

But, by hypothesis, {w'} is a bounded subset of N (whenever it is a
subset of A) and so a,w’—0 in \, as r— . Hence, (A, x7, ) = (A, v, N).
By applying Lemma 7 and Theorem 2 to {v’} (the way Lemma 6 and
Theorem 2 are applied to {y'}) and then using Lemma 8 we finally
get that (A, x7, A\) = (A, e, \), and the proof is complete.

COROLLARY 1. Let \, A, and {x7} satisfy the hypothesis of Theorem 3
and assume that either
(1) NDI? for some p>1, or that
(ii) N s averaging and repeating.
If \ is A-conullable in A under {x*} then
(A, a7, \) = (A, w, N) #= (A, €, N).
If \ satisfies case (i) and if N is A*-conullable in A under {x'}, then
(A%, a7, A) = (A%, w", A) # (A%, €, N).

PROOF. Assume first that ADI? for some p > 1. Since e'—0 weakly
in 17, e—0 weakly in \. (Indeed, A2I? and so each fEN’ is also con-
tinuous on /7 [4, p. 203, Corollary 1].) The conclusion now follows
easily from Theorem 3.

Assume next that \ is averaging and repeating. Then V&I and
VA =1, where 4 = (a.;) is defined by the set of equations

G = 1 fork(k — 1)/2 < n = k(k+ 1)/2.
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Since 4 is repeating, 4 also belongs to T'y; hence, neither (A¥, er, \)
nor (A, e, \) is an ideal and the conclusion follows once again from
Theorem 3.

COROLLARY 2. Let \, A, and {x7} satisfy the hypothesis of Theorem 3.
If N is also averaging, repeating, and expansive then \ is neither A-
conullable nor A*-conullable in A under {x7}.

ProoF. Define 4'=(ay;) and A’ =(ay;) by setting a3, 2 =0 2,1
=1. Since N is contractive, A’ and 4’ belong to I'\CA. Hence,
A=A4"—A" also belongs to I'y. Now 4 has a right inverse in A. In-
deed, define B = (bnx) by bsx—2x=1. Then BET\CA (because \ is
expansive) and AB=1. Moreover, Aw* 2= —¢ and Aw"=0 if
n#3r—2 for some r. Thus, if N were A-conullable (resp., A*-conul-
lable) in A under {x7}, then (by part (ii) of Corollary 1) (A, 7, \)
=, w, N\)#Z(A, e, \) (resp., (A%, x7, \) =A%, w, N)=(A*, e, N\)),
while (by Theorem 2) (A, w", N\) = (A, Aw", \) = (A, e, N)
(resp., (A*, w™, N\) = (A*, Aw’, \) = (A*, e, \)). Since these two conclu-
sions contradict each other the proof of the corollary is complete.

COROLLARY 3. Let x"&m for each r and let N be contractive with \D1
and e\, If every comtractive matrix has a right inverse in A then \ is
neither A-conullable nor A*-conullable in A under {x7}.

PRroOF. Since e EN?, w™€EN for each 7. Suppose that A is A-conullable
(resp., A*-conullable) in A under {x’} Then, by Theorem 3,
(A, x7, N)=(4, e, \) (resp., (A*, x7, N\)=(A*, e, N\)). Let E=(en)
be a matrix such that ey=1 for each k. Then EE(A, x7, \)
(resp., EC(A*, x7, \)) because e&\f and x]—0, as r— . Thus,
EE(, e, N\) (resp., EE(A¥, €7, \)), which is absurd because Eer =e!
for each 7.

4. Applications to the special spaces.

PRrOPOSITION 1. If ¢ is A-conullable in A under {x*} then (A, ", c)
=(A, w, ¢) and A=T.. Moreover, ¢ is never A*-conullable in any A
under any {x7}.

Proor. Since ¢ is both contractive and repeating, each contractive
matrix has a right inverse in I':CA. Therefore, by part (i) of Corollary
1, if ¢ is A-conullable in A under {x’} then (A, x7, ¢) = (A, w", ¢). But
then, by part (iii) of Theorem 1, A=T'. and so the proof of the first
statement is complete.

To prove the second statement assume that ¢ is A*-conullable in
some A under some {x"}. Since c is averaging (V is a regular Toeplitz
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matrix), it follows from part (ii) of Corollary 1 that (A*, x7, ¢)
=(A* w", c¢). Using again part (iii) of Theorem 1 we then get that
(TF, x7, ¢) = (T'F, w", ¢). But this is impossible because (I'Y, ", ¢) is not
an ideal in I'.. Indeed, define 4 = (anx), B = (bax), and C=(cax) by the
set of equations:

Apn = — Qp,n4l = 1;

n—1 n

(=1)k/2nfor 3.2 < kb < D27

=1 i=1

bnk

Co1 = — Ca2 = 2;

k—3

E—2
Conk = —2f0r1+22‘<n§1+225,
i=1

=1

k—2 k-1
+2for1+ X 2i<n <14 2,28
=1 =1
Then all three matrices belong to I'., A& ('Y, w', ¢), BE [, v, ¢),
and BC=A. This completes the proof.
Let 6 denote the set of compact matrices in T',.

PROPOSITION 2. If v is A-conullable (resp., A*-conullable) in A under
{xr}, then (A, x7, v) = (A, w, v) =0 (resp., (A*, x7, v) = (A*, w", v) =6)
and A=T,.

PRrOOEF. v, like ¢, is contractive, repeating, and averaging. Thus,
as in the preceding proof, we may use Corollary 1 and part (iii) of
Theorem 1 to conclude that (A, x7, v) = (A, w", v) (or that (A*, x7, v)
=(A* wr, v) in case v is A*-conullable) and that A =T',. But Sember
[2] has shown that (T',, w", v) =6, and so the proof follows from the
observation that (I, ", v) D (T, w", v) D6.

It has already been pointed out (in the remarks preceding Lemma
3) that l» (p=1), co, and 7 are never A-conullable in A under any {x’} .
We now show that the same is true for A*-conullity. For the sake of
completeness, however, we include the statement about A-conullity
each time.

PROPOSITION 3. Let \ be either co or m. Then \ is neither A-conullable
nor A*-conullable in any A under any {x"}

Proor. This follows immediately from Corollary 2.

Since I and +y are both contractive and expansive, each contractive
matrix in I'; (resp., I',) has a right inverse in T'; (resp., I',) and so the
next result is an immediate consequence of Corollary 3.
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PROPOSITION 4. Let \ be either I or v. Then \ is neither T'\-conullable
nor TX-conullable in T (=B[\]) under any {x7}.

PROPOSITION 5. Let N\ be any one of the I* spaces, p>1. Then N\ is
neither Tx-conullable nor Tx-conullable in Ty (=B[\]) under any {x7}.

PRroOF. We need only prove that \ is not T'y-conullable.
Fix p>1, let A=I», and let ¢ be conjugate to p, i.e. 1/p+1/g=1.
Define 4 = (aq.x) and B = (b,x) by the set of equations:

n—1 n
1/27 for 3, 20d < k< 3 2lid;

=1 =1

Ank

k—1 k
boe = 1/202@ D1 for > 26d <y < Ezliql,

=1 =1

where [x] denotes the smallest integer which is greater than or equal
to x. Then a straightforward computation shows that 4 and B belong
to I'y and that AB =1, the identity matrix. Moreover, 4 (T, €, \)
and so (T, e7, \) cannot be a proper ideal in T. Hence, A cannot be
T'Y-conullable in T under {x'} Indeed, since N is contractive and
expansive, each contractive matrix has a right inverse in I'y and so,
by Theorem 3, if X were T'y-conullable in Ty under some {x’} then
(T, x7, \) = Ty, €7, \), which is not possible.
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