CONULLITY OF OPERATORS ON SOME FK-SPACES

H. I. BROWN¹ AND H. H. STRATTON²

ABSTRACT. The notion of *conullity* for a subclass of the algebra of matrix operators on the space of convergent sequences is well known in summability theory. In this paper the space of convergent sequences is replaced by a general (locally convex) *FK*-space and the following question is studied: Given a subalgebra of the algebra of all continuous linear operators on this *FK*-space, is there a class of operators in this subalgebra whose behavior is "conull-like"? The question is answered in the case when the *FK*-space has a suitable (Schauder) basis and also in some other special cases.

1. Introduction. The algebra, Γ_c , of complex matrix operators on the set c of convergent complex number sequences is partitioned into two classes: the conull matrices and the coregular matrices. (See, for example, [1].) The class of conull matrices, denoted by ψ , may be characterized either as the kernel of the only nontrivial multiplicative linear functional on Γ_c ([1]; see also [6]), or as the set $\{A \in \Gamma_c : A \in$ $w^r \rightarrow 0$ weakly in c_A , where c_A denotes the summability field of A and $w^r = e - \sum_{k=1}^r e^k$, for $r = 1, 2, \cdots$. (As usual, $e = (1, 1, 1, \cdots)$ is the unit sequence and $e^k = (0, \dots, 0, 1, 0, \dots)$ is the sequence having a 1 in the kth coordinate and zeros elsewhere.) Since the kernel of a multiplicative functional is an ideal, the first characterization displays an algebraic likeness between the set of conull matrices and the zero matrix (in the sense that $A\psi \subseteq \psi$ and $\psi A \subseteq \psi$ for each A in Γ_{c} , just as $A\{0\}\subseteq\{0\}$ and $\{0\}A\subseteq\{0\}$, where 0 denotes the zero matrix). The second characterization displays a topological likeness between ψ and the zero matrix (because $w^r \rightarrow 0$ weakly in s, the set of all complex number sequences, and s is the summability field of the zero matrix). In this paper we replace c by a more general (locally convex) FK-space λ and we replace Γ_c by the set Γ_{λ} of matrix operators on λ . We then consider the following question: Given an algebra Λ which contains Γ_{λ} and which is contained in the set $B[\lambda]$ of all continuous linear operators on λ , is there a class of operators in Λ whose behavior is "conull-like"? By "conull-like" we will mean that the class resembles the zero matrix in both an algebraic and a topo-

Received by the editors October 23, 1969.

AMS Subject Classifications. Primary 4046; Secondary 4050.

Key Words and Phrases. Conullity, proper ideal, Schauder basis, FK-space, β-dual.

¹ Research supported in part by NSF Grant GP-12017.

² Research supported in part by NSF Grant GP-8502.

logical sense. In order to make this more precise we first give an equivalent reformulation of the second characterization of ψ .

Recall that if $A \in \Gamma_c$ and $f \in c'_A$, the dual space of c_A , then f has representation³ [4, p. 230]

$$f(x) = g(Ax) + \sum_{k} \beta_{k} x_{k},$$

where g is a continuous linear functional on c and $\sum_{k} |\beta_{k}| < \infty$. But

$$\lim_{r} \sum_{k} \beta_{k} w_{k}^{r} = \lim_{r} \sum_{k=r+1}^{\infty} \beta_{k} = 0$$

and so $w^r \rightarrow 0$ weakly in c_A if and only if $Aw^r \rightarrow 0$ weakly in c. Thus, ψ may be characterized as being precisely the set

$$\{A \in \Gamma_c : Aw^r \to 0 \text{ weakly in } c, \text{ as } r \to \infty \}.$$

(Notice that this equivalent reformulation also displays a topological likeness between ψ and the zero matrix in the sense that it shows that each A in ψ maps a sequence, each of whose elements is at a distance of one from the zero sequence, into a weakly convergent to zero sequence.)

Now let λ be an FK-space, $\{x^r: r=1, 2, \cdots\}$ a subset of λ , and Λ a subalgebra of $B[\lambda]$ which contains Γ_{λ} . Furthermore, let

$$(\Lambda, x^r, \lambda) = \{ A \in \Lambda : Ax^r \to 0 \text{ weakly in } \lambda, \text{ as } r \to \infty \}.$$

We say that " $\{x^r\}$ in λ acts like $\{w^r\}$ in the sense of Wilansky," and write $x^r \sim \lambda$, if $x^r \to 0$ in s but $x^r \to 0$ weakly in λ . (See [5, p. 90].) We can now make precise what we mean by "conull-like" by reformulating our original question as follows: given λ and Λ , does there exist a subset $\{x^r\}$ of λ such that $x^r \sim \lambda$ and such that (Λ, x^r, λ) is a proper ideal in Λ ? If the answer is affirmative, that is, if $x^r \sim \lambda$ and if (Λ, x^r, λ) is a proper ideal in Λ , then we say that λ is Λ -conullable in Λ under $\{x^r\}$. For example, c is Γ_c -conullable in Γ_c under $\{w^r\}$ because $w^r \sim c$ and $(\Gamma_c, w^r, c) = \psi$ is a proper ideal in Γ_c .

The zero matrix satisfies a stronger property; namely that $0x^r \rightarrow 0$ in the topology of λ . This motivates the following definition. If $x^r \sim \lambda$ and if the set

$$(\Lambda^*, x^r, \lambda) = \{A \in \Lambda : Ax^r \to 0 \text{ in } \lambda, \text{ as } r \to \infty\}$$

is a proper ideal in Λ , then we say that λ is Λ^* -conullable in Λ under $\{x^r\}$.

² Unless otherwise specified, all summations are from 1 to ∞.

1970]

It is clear that for each λ , Λ , and x^r in λ , $(\Lambda^*, x^r, \lambda)$ is a subset of $(\Lambda, x^r, \lambda).$

In the course of our work we establish the following results. (All as yet undefined symbols will be defined in §2.)

- (i) If $\{e^r\}$ is a (Schauder) basis for λ (for example, if λ is l^p ($p \ge 1$), c_0 , or γ), then λ is not Γ_{λ} -conullable in Γ_{λ} (=B[λ]) under { e^r }.
- (ii) If $\{u, e^k : k = 1, 2, \cdots\}$ is a (Schauder) basis for λ (for example, if u = e and λ is either c or v), then (Λ, z^r, λ) is always a class of matrices, where $z^r = u - \sum_{k=1}^r u_k e^k$. Furthermore, λ is Λ -conullable in Λ under $\{z^r\}$ if and only if $\Lambda = \Gamma_{\lambda}$. In other words, Λ -conullity of λ under $\{z^r\}$ is, and only is, a matrix notion whenever $\{u, e^k\}$ is a basis for λ.
- (iii) If λ is either c or v, and if λ is Λ -conullable under $\{x^r\}$ in Λ , then $\Lambda = \Gamma_{\lambda}$ and $(\Lambda, x^r, \lambda) = (\Lambda, w^r, \lambda)$. That is, Λ -conullity in either c or v is a unique matrix concept.
 - (iv) m is not Λ -conullable in any Λ under any $\{x^r\}$.
- (v) If λ is l^p $(p \ge 1)$, c_0 , γ , c, or m, then λ is not Λ^* -conullable in any Λ under any $\{x^r\}$. However, if λ is v then the only Λ and $\{x^r\}$ which make $v \Lambda^*$ -conullable in Λ under $\{x^r\}$ are Γ_v and $\{w^r\}$; moreover, $(\Gamma_v^*, w^r, v) = (\Gamma_v, w^r, v) = \theta$, where θ denotes the set of compact matrices on v.

Since the set of compact operators in $B|\lambda|$ is always an ideal and since a compact operator resembles the zero matrix in how it maps sets, an argument could be made for selecting the set of compact operators as representing the "conull-like" class of operators. However, from a summability point of view this is not satisfactory because conullity is an invariant property, i.e. if A is conull and $\lambda_A = \lambda_B$ then B is also conull (the case when $\lambda = c$ is very well known), whereas compactness is not an invariant property. For example, take λ to be γ (the set of convergent series) and take A to be the matrix whose first row is e and whose other entries are zero. Then A is a compact operator on γ and γ_A (= $\{x: Ax \in \gamma\}$) is precisely γ . But γ is also γ_I , where I is the identity matrix which, of course, is not compact.

2. Further definitions and notation. As usual, l^p $(p \ge 1)$, m, c, c_0 , γ , and v, respectively, denote the subsets of s consisting of those sequences x for which $\sum_{k} |x_{k}|^{p} < \infty$, $\sup_{k} |x_{k}| < \infty$, $\lim_{k} |x_{k}| = x$ exists, $\lim_k x_k = 0$, $\sum_k x_k$ converges, and $\sum_k |x_k - x_{k+1}| < \infty$, respectively. (In the particular case when p=1 we will write l instead of l^1 .) The β -dual of an FK-space λ , denoted by λ^{β} , is the set

$$\lambda^{\beta} = \left\{ \beta \in s; \sum_{k} \beta_{k} x_{k} \text{ converges for all } x \in \lambda \right\}.$$

By the Banach-Steinhaus Closure Theorem, $\sum_k \beta_k x_k$ defines a member of the dual space λ' of λ for each $\beta \in \lambda^{\beta}$. We assume, throughout this paper, that all FK-spaces contain all the finite sequences and that the composition of any two members of Γ_{λ} is given by matrix multiplication. (This is the case if either $\{e^k\}$ is a Schauder basis for λ , or if Γ_{λ} is a ring under matrix multiplication and $\{e^k\}$ is a Schauder basis for λ^{β} .)

All increasing subsequences of positive integers are denoted by $\{n_k\}$ or, for convenience, by $\{n(k)\}$. The letter V is reserved for the matrix (v_{nk}) defined by the set of equations

$$v_{nk} = 1/n$$
 for $(n-1)n/2 < k \le n(n+1)/2$.

(Throughout this paper all undesignated entries in matrices and sequences are assumed to be zero.)

Let λ be an FK-space. We say that λ is:

averaging if, given $x \in \lambda$ then $y \in \lambda$ whenever $y_k = x_k/n$ for $(n-1)n/2 < k \le n(n+1)/2$;

contractive if, given $\{k_i\}$ and $x \in \lambda$ then $y \in \lambda$ whenever $y_i = x_{k(i)}$; repeating if, given $\{k_i\}$ and $x \in \lambda$ then $y \in \lambda$ whenever $y_k = x_i$ for $k_i \leq k < k_{i+1}$;

expansive if, given $\{k_i\}$ and $x \in \lambda$ then $y \in \lambda$ whenever $y_{k(i)} = x_i$. We remark here that each of the special spaces mentioned earlier is at least averaging and contractive.

A matrix $A = (a_{nk})$ is called:

contractive if, given $\{k_n\}$ then $a_{n,k(n)}=1$;

repeating if, given $\{n_i\}$ then $a_{ni} = 1$ for $n_i \le n < n_{i+1}$;

expansive if, given $\{n_i\}$ then $a_{n(i),i}=1$.

Thus, an FK-space λ is averaging if and only if $V \in \Gamma_{\lambda}$; it is contractive (resp., repeating or expansive) if and only if Γ_{λ} contains all contractive (resp., repeating or expansive) matrices.

3. General results. As mentioned above λ always represents an FK-space containing the finite sequences, Λ represents a subalgebra of $B[\lambda]$ which contains Γ_{λ} , and composition in Γ_{λ} is matrix multiplication.

LEMMA 1. (Λ, x^r, λ) and $(\Lambda^*, x^r, \lambda)$ are left ideals in Λ .

PROOF. Let $A \in (\Lambda, x^r, \lambda)$ and $B \in \Lambda$. Then $(BA)x^r = B(Ax^r)$ and, since B is continuous, $B(Ax^r) \to 0$ weakly in λ . Thus, $BA \in (\Lambda, x^r, \lambda)$. Similarly, $(\Lambda^*, x^r, \lambda)$ is a left ideal in Λ .

LEMMA 2. If $x^r \sim \lambda$ and if (Λ, x^r, λ) is a right ideal in Λ , then $\sum_k \beta_k x_k^r \rightarrow 0$ for each $\beta \in \lambda^{\beta}$. A similar result holds if $(\Lambda^*, x^r, \lambda)$ is a right ideal in Λ .

PROOF. Let $E = (e_{nk})$ be the matrix defined by setting $e_{11} = 1$ and $e_{nk} = 0$ if either $n \neq 1$ or $k \neq 1$. Since $x^r \sim \lambda$, $E \in (\Lambda^*, x^r, \lambda) \subseteq (\Lambda, x^r, \lambda)$. Given any $\beta \in \lambda^{\beta}$, define $B = (b_{nk})$ by setting $b_{1k} = \beta_k$. Then $B \in \Gamma_{\lambda}$ and EB = B. Hence, if $(\Lambda^*, x^r, \lambda)$ (resp., (Λ, x^r, λ)) is an ideal, then $B \in (\Lambda^*, x^r, \lambda)$ (resp., $B \in (\Lambda, x^r, \lambda)$). Moreover, $Bx^r = e^1 \sum_k \beta_k x_k^r$ and so $f(Bx^r) = f(e^1) \sum_k \beta_k x_k^r \to 0$ for each $f \in \lambda'$. Since we may choose f so that $f(e^1) \neq 0$ the proof of the lemma is complete.

COROLLARY. If $\lambda' = \lambda^{\beta}$ then λ is not Λ -conullable in any Λ under any $\{x^r\}$.

Since $\lambda' = \lambda^{\beta}$ whenever $\{e^k\}$ is a basis for λ , we see that, in particular, l^p $(p \ge 1)$, c_0 , and γ are never Λ -conullable in Λ under any $\{x^r\}$.

LEMMA 3. Let $\{u, e^k : k = 1, 2, \cdots \}$ be a basis for λ and let $z^r = u - \sum_{k=1}^r u_k e^k$. Then $\sum_k \beta_k z_k^r \to 0$ for each $\beta \in \lambda^{\beta}$.

Proof. If $\beta \in \lambda^{\beta}$ then $\sum_{k=r+1}^{\infty} \beta_k x_k \to 0$, as $r \to \infty$, for each $x \in \lambda$. Thus, $\sum_{k} \beta_k z_k^r = \sum_{k=r+1}^{\infty} \beta_k u_k \to 0$, as $r \to \infty$.

LEMMA 4. Let $\{u, e^k\}$ be a basis for λ and let $T \in B[\lambda]$. Then $T \in \Gamma_{\lambda}$ if and only if $\sum_k u_k(Te^k)n$ converges and equals $(Tu)_n$ for each n.

(The special case when $\lambda = c$ and u = e was proved by Wilansky [6]. Our proof is essentially his and we present it here for the sake of completeness.)

PROOF. If $x \in \lambda$ then x has the representation $x = \alpha_0 u + \sum_k \alpha_k e^k$ for some unique sequence of scalars $\alpha_0, \alpha_1, \alpha_2, \cdots$. Since coordinates are continuous in λ the representation becomes $x = \alpha_0 u + \sum_k (x_k - \alpha_0 u_k) e^k$. Thus, for each $T \in B[\lambda]$, $Tx = \alpha_0 Tu + \sum_k (x_k - \alpha_0 u_k) Te^k$ and the proof follows easily from this equation.

THEOREM 1. Let $\{u, e^k\}$ be a basis for λ and let $z^r = u - \sum_{k=1}^r u_k e^k$.

- (i) (Λ, z^r, λ) , and hence $(\Lambda^*, z^r, \lambda)$, is contained in Γ_{λ} for each Λ .
- (ii) λ is Γ_{λ} -conullable in Γ_{λ} under $\{z^r\}$.
- (iii) If $\Lambda \neq \Gamma_{\lambda}$ then λ is neither Λ -conullable nor Λ^* -conullable in Λ under $\{z^r\}$.

PROOF. (i) This is an immediate consequence of Lemma 4 because if $T \in (\Lambda, z^r, \lambda)$ then $(Tz^r)_n \to 0$, as $r \to \infty$, for each n.

(ii) Notice first that $z^r \sim \lambda$ because there exists $f \in \lambda'$ satisfying f(u) = 1 and $f(e^k) = 0$ for each k. Also, if I denotes the identity matrix then $I \notin (\Gamma_{\lambda}, z^r, \lambda)$ and so $(\Gamma_{\lambda}, z^r, \lambda) \neq \Gamma_{\lambda}$.

To show that λ is Γ_{λ} -conullable in Γ_{λ} under $\{z^{r}\}$ it suffices, by Lemma 1, to show that $(\Gamma_{\lambda}, z^{r}, \lambda)$ is a right ideal. Thus, let $B \in (\Gamma_{\lambda}, z^{r}, \lambda)$, $f \in \lambda'$, and $A \in \Gamma_{\lambda}$. Since $Bz^{r} \to 0$ weakly in λ , $\sum_{k} u_{k} f(Be^{k})$ con-

verges and equals f(Bu). Hence, the sequence $\{f(Be^k)\}$ is a member of λ^{β} . (Indeed, if $x \in \lambda$ then there exists a scalar α_0 such that $x = \alpha_0 u + \sum_k (x_k - \alpha_0 u_k) e^k$ and so $f(Bx) = \alpha_0 f(Bu) + \sum_k (x_k - \alpha_0 u_k) f(Be^k) = \sum_k x_k f(Be^k)$.) Thus, if we define $F = (f_{nk})$ by setting $f_{1k} = f(Be^k)$, then $F \in \Gamma_{\lambda}$ and $FA \in \Gamma_{\lambda}$. Let β denote the first row of FA. Then $\beta \in \lambda^{\beta}$ and, by Lemma 3, $\sum_k \beta_k z_k^r \to 0$, as $r \to \infty$. But $\sum_k \beta_k z_k^r = ((FA)z^r)_1$ and since matrix multiplication is composition, $((FA)z^r)_1 = (F(Az^r))_1 = \sum_k f(Be^k)(Az^r)_k = f(B(Az^r)) = f((BA)z^r)$, so that $(BA)z^r \to 0$ weakly in λ . Hence, $BA \in (\Lambda, z^r, \lambda)$ and so λ is Γ_{λ} -conullable in Γ_{λ} under $\{z^r\}$.

(iii) Without loss of generality we may assume that $u_j \neq 0$ for each j. Now, for each j, define $Q^j = (q^j_{nk})$ by setting $q^j_{nj} = u_n/u_j$ and $q^j_{nk} = 0$ when $k \neq j$. Then for each $x \in \lambda$ we have that $Q^j x = (x_j/u_j)u \in \lambda$ and so $Q^j \in \Gamma_{\lambda}$. Moreover, $Q^j u = u$, $Q^j e^j = (1/u_j)u$, and $Q^j e^k = \{0\}$ if $k \neq j$. Therefore, $Q^j \in (\Lambda, z^r, \lambda)$.

Assume that λ is Λ -conullable in Λ under $\{z^r\}$. Then (Λ, z^r, λ) is a right ideal in Λ and so $Q^jT(u-\sum_{k=1}^r u_ke^k)\to 0$ weakly in λ , since $Q^jT\in (\Lambda, z^r, \lambda)$ for each $T\in \Lambda$. But $Q^j(Tu)=((Tu)_j/u_j)u$, $Q^j(Te^k)=((Te^k)_j/u_j)u$ and coordinates are continuous in λ ; hence, we have that $(Tu)_j=\sum_k u_k(Te^k)_j$. Since this holds for each j, Lemma 4 shows that $T\in \Gamma_{\lambda}$. This contradicts the hypothesis that $\Gamma_{\lambda}\neq \Lambda$ and so λ is not Λ -conullable in Λ under $\{z^r\}$. A similar argument may be used to show that λ is not Λ^* -conullable in Λ under $\{z^r\}$.

THEOREM 2. If λ is Λ -conullable (resp., Λ^* -conullable) in Λ under $\{x^r\}$ then, for each $A \in \Lambda$, $(\Lambda, x^r, \lambda) \subseteq (\Lambda, Ax^r, \lambda)$ (resp., $(\Lambda^*, x^r, \lambda) \subseteq (\Lambda^*, Ax^r, \lambda)$). If, in addition, A has a right inverse in Λ then $(\Lambda, x^r, \lambda) = (\Lambda, Ax^r, \lambda)$ (resp., $(\Lambda^*, x^r, \lambda) = (\Lambda^*, Ax^r, \lambda)$).

PROOF. For each $B \in (\Lambda, x^r, \lambda)$ and each $f \in \lambda'$ we have that $f(B(Ax^r)) = f(BA(x^r))$. Since (Λ, x^r, λ) is a right ideal, $BA \in (\Lambda, x^r, \lambda)$; hence, $B(Ax^r) \rightarrow 0$ weakly in λ and so $B \in (\Lambda, Ax^r, \lambda)$.

Assume next that A' is a right inverse for A in Λ and let $B \in (\Lambda, Ax^r, \lambda)$. Then $BA(x^r) = B(Ax^r) \rightarrow 0$ weakly in λ and so $BA \in (\Lambda, x^r, \lambda)$. Since (Λ, x^r, λ) is a right ideal, $B = (BA)A' \in (\Lambda, x^r, \lambda)$. The parenthetical statements are proved analogously.

LEMMA 5. Given $x^r \in m$, $r = 1, 2, \dots$, there exists a contractive matrix A such that $Ax^r \in c$, $r = 1, 2, \dots$

PROOF. Since each $x^r \\\in m$ we may choose $\{k_j\}$ (by a diagonalization process) so that $\lim_j x_{k(j)}^r$ exists for each r. If $A = (a_{nk})$ is defined by setting $a_{n,k(n)} = 1$, then A is contractive and $Ax^r \\in c$ for each r.

LEMMA 6. For each $r = 1, 2, \dots$, let $y^r \in c$ with $\lim_k y_k^r = \alpha_r$. If $y^r \to 0$ in s and if $\{r_i\}$ is given then there exist a contractive matrix B, a subse-

quence $\{r'_i\}$ of $\{r_i\}$, and a sequence $\{v^r\}$ of elements in the unit ball of l with $v^{r'(j)} \rightarrow 0$ in l, as $j \rightarrow \infty$, such that

$$By^r = \alpha_r w^j + v^r$$
 for $r'_j \leq r < r'_{j+1}$.

(Recall that $w^j = e - \sum_{k=1}^{j} e^k$.)

PROOF. Choose k_1 so that $|y_k^l - \alpha_1| < 1/2$ for $k \ge k_1$ and then choose r_i' so that $|y_{k(1)}^l| < 1/2$ whenever $r \ge r_i'$. Having chosen k_j and r_j' , choose $k_{j+1} > k_j$ so that $|y_k^r - \alpha_k| < 1/2^{j+1}$ for $k \ge k_{j+1}$ and $1 \le r \le r_j'$ and then choose $r_{j+1}' > r_j'$ so that $|y_{k(i)}^r| < 1/2^{j+1}$ whenever $r \ge r_{j+1}'$ and $i = 1, 2, \dots, j+1$. Then the matrix $B = (b_{nk})$, defined by setting $b_{j,k(j)} = 1$ $(j = 1, 2, \dots)$, is contractive and satisfies the conclusion of the lemma.

LEMMA 7. Let $\{v^r\}$ be a sequence of elements in the unit ball of l such that $v^r \rightarrow 0$ in s. Then there exist $\{r_j\}$, a contractive matrix B, and a sequence of scalars $\{c_r\}$ with $\sup |c_r| \leq 1$, such that

$$Bv^r = c_r e^j + y^r$$
 for $r_j \leq r < r_{j+1}$,

where each $y^r \in l$ and $y^r \to 0$ in l, as $r \to \infty$.

PROOF. Choose k_1 so that $\sum_{k=k(1)}^{\infty} |v_k^1| < 1/2$ and then choose r_1 so that $|v_{k(1)}^r| < 1/2$ whenever $r \ge r_1$. Having chosen k_j and r_j , choose $k_{j+1} > k_j$ so that $\sum_{k=k(j+1)}^{\infty} |v_k^r| < 1/2^{j+1}$ for $r \le r_j$ and then choose $r_{j+1} > r_j$ so that $|x_{k(i)}^r| < 1/2^{j+1}$ whenever $r \ge r_{j+1}$ and $i=1, 2, \cdots, j+1$. Then the matrix $B = (b_{nk})$, defined by setting $b_{j,k(j)} = 1$ $(j=1, 2, \cdots)$, is contractive and satisfies the conclusion of the lemma.

LEMMA 8. Given $\{n_k\}$ there exists a contractive matrix A such that $Ae^{n(k)} = e^k$ for each k.

The proof of this lemma is straightforward and so we omit it.

THEOREM 3. Let $\lambda \supseteq l$ and suppose that whenever $\{w^r\}$ is a subset of λ then it is a bounded subset of λ . Let $x^r \in m$ $(r = 1, 2, \cdots)$ and assume also that λ is contractive and is such that each contractive matrix has a right inverse in Λ . Then, if λ is Λ -conullable (resp., Λ^* -conullable) in Λ under $\{x^r\}$, either

$$(\Lambda, x^r, \lambda) = (\Lambda, e^r, \lambda) \quad (resp., (\Lambda^*, x^r, \lambda) = (\Lambda^*, e^r, \lambda))$$

or

$$(\Lambda, x^r, \lambda) = (\Lambda, w^r, \lambda) \quad (resp., (\Lambda^*, x^r, \lambda) = (\Lambda^*, w^r, \lambda)).$$

Proof. We shall only prove the theorem for the case when λ is Λ -conullable. The proof for the other case is analogous.

By Lemma 5 there exists a contractive matrix A such that $y^r = Ax^r \in c$ for each r, and, by Theorem 2, since A has a right inverse in Λ , $(\Lambda, x^r, \lambda) = (\Lambda, y^r, \lambda)$. Notice that $y^r \to 0$ in s because $x^r \to 0$ in s. If $\alpha_r = \lim_k y_k^r$ then there are two cases to consider. Either there exists $\{r_j\}$ such that $\alpha_{r(j)} \to \alpha \neq 0$, as $j \to \infty$, or else $\alpha_r \to 0$, as $r \to \infty$.

In the first case, by Lemma 6, there exists a contractive matrix B, a subsequence $\{r'_j\}$ of $\{r_j\}$ and sequences v^r in the unit ball of l with $v^{r'(j)} \rightarrow 0$, as $j \rightarrow \infty$, such that $By^r = \alpha_r w^j + v^r$ for $r'_j \leq r < r'_{j+1}$. Hence, using Theorem 2 (since B has a right inverse in Λ) we get

$$(\Lambda, x^r, \lambda) = (\Lambda, y^r, \lambda) = (\Lambda, \alpha_r w^j + v^r, \lambda),$$

where $r'_i \leq r < r'_{j+1}$. But $v^{r'(j)} \to 0$ in λ (because $v^{r'(j)} \to 0$ in l and $\lambda \supseteq l$ [4, p. 203, Corollary 1]) and $\alpha_{r(j)} \to 0$, as $j \to \infty$; hence, $(\Lambda, x^r, \lambda) = (\Lambda, w^r, \lambda)$.

In the second case we have that $\alpha_r \rightarrow 0$, as $r \rightarrow \infty$. Using Lemma 6 and Theorem 2 as in the first case (this time with I^+ the given subsequence) we again obtain a contractive matrix B and sequences v^r such that

$$(\Lambda, x^r, \lambda) = (\Lambda, y^r, \lambda) = (\Lambda, By^r, \lambda) = (\Lambda, \alpha_r w^j + v^r, \lambda).$$

But, by hypothesis, $\{w^r\}$ is a bounded subset of λ (whenever it is a subset of λ) and so $\alpha_r w^j \to 0$ in λ , as $r \to \infty$. Hence, $(\Lambda, x^r, \lambda) = (\Lambda, v^r, \lambda)$. By applying Lemma 7 and Theorem 2 to $\{v^r\}$ (the way Lemma 6 and Theorem 2 are applied to $\{y^r\}$) and then using Lemma 8 we finally get that $(\Lambda, x^r, \lambda) = (\Lambda, e^r, \lambda)$, and the proof is complete.

COROLLARY 1. Let λ , Λ , and $\{x^r\}$ satisfy the hypothesis of Theorem 3 and assume that either

- (i) $\lambda \supseteq l^p$ for some p > 1, or that
- (ii) λ is averaging and repeating.

If λ is Λ -conullable in Λ under $\{x^r\}$ then

$$(\Lambda, x^r, \lambda) = (\Lambda, w^r, \lambda) \neq (\Lambda, e^r, \lambda).$$

If λ satisfies case (ii) and if λ is Λ^* -conullable in Λ under $\{x^r\}$, then

$$(\Lambda^*, x^r, \lambda) = (\Lambda^*, w^r, \lambda) \neq (\Lambda^*, e^r, \lambda).$$

PROOF. Assume first that $\lambda \supseteq l^p$ for some p > 1. Since $e^r \to 0$ weakly in l^p , $e^r \to 0$ weakly in λ . (Indeed, $\lambda \supseteq l^p$ and so each $f \in \lambda'$ is also continuous on l^p [4, p. 203, Corollary 1].) The conclusion now follows easily from Theorem 3.

Assume next that λ is averaging and repeating. Then $V \in \Gamma_{\lambda}$ and VA = I, where $A = (a_{nk})$ is defined by the set of equations

$$a_{nk} = 1$$
 for $k(k-1)/2 < n \le k(k+1)/2$.

Since A is repeating, A also belongs to Γ_{λ} ; hence, neither $(\Lambda^*, e^r, \lambda)$ nor (Λ, e^r, λ) is an ideal and the conclusion follows once again from Theorem 3.

COROLLARY 2. Let λ , Λ , and $\{x^r\}$ satisfy the hypothesis of Theorem 3. If λ is also averaging, repeating, and expansive then λ is neither Λ -conullable nor Λ^* -conullable in Λ under $\{x^r\}$.

Proof. Define $A' = (a'_{nk})$ and $A'' = (a''_{nk})$ by setting $a'_{n,3n-2} = a''_{n,3n-1} = 1$. Since λ is contractive, A' and A'' belong to $\Gamma_{\lambda} \subseteq \Lambda$. Hence, A = A' - A'' also belongs to Γ_{λ} . Now A has a right inverse in Λ . Indeed, define $B = (b_{nk})$ by $b_{3k-2,k} = 1$. Then $B \in \Gamma_{\lambda} \subseteq \Lambda$ (because λ is expansive) and AB = I. Moreover, $Aw^{3r-2} = -e^r$ and $Aw^n = 0$ if $n \neq 3r-2$ for some r. Thus, if λ were Λ -conullable (resp., Λ^* -conullable) in Λ under $\{x^r\}$, then (by part (ii) of Corollary 1) $(\Lambda, x^r, \lambda) = (\Lambda, w^r, \lambda) \neq (\Lambda, e^r, \lambda)$ (resp., $(\Lambda^*, x^r, \lambda) = (\Lambda^*, w^r, \lambda) \neq (\Lambda^*, e^r, \lambda)$), while (by Theorem 2) $(\Lambda, w^r, \lambda) = (\Lambda, Aw^r, \lambda) = (\Lambda, e^r, \lambda)$ (resp., $(\Lambda^*, w^r, \lambda) = (\Lambda^*, Aw^r, \lambda) = (\Lambda^*, e^r, \lambda)$). Since these two conclusions contradict each other the proof of the corollary is complete.

COROLLARY 3. Let $x^r \in m$ for each r and let λ be contractive with $\lambda \supseteq l$ and $e \in \lambda^{\beta}$. If every contractive matrix has a right inverse in Λ then λ is neither Λ -conullable nor Λ^* -conullable in Λ under $\{x^r\}$.

PROOF. Since $e \in \lambda^{\beta}$, $w^r \notin \lambda$ for each r. Suppose that λ is Λ -conullable (resp., Λ^* -conullable) in Λ under $\{x^r\}$. Then, by Theorem 3, $(\Lambda, x^r, \lambda) = (\Lambda, e^r, \lambda)$ (resp., $(\Lambda^*, x^r, \lambda) = (\Lambda^*, e^r, \lambda)$). Let $E = (e_{nk})$ be a matrix such that $e_{1k} = 1$ for each k. Then $E \in (\Lambda, x^r, \lambda)$ (resp., $E \in (\Lambda^*, x^r, \lambda)$) because $e \in \lambda^{\beta}$ and $x_1^r \to 0$, as $r \to \infty$. Thus, $E \in (\Lambda, e^r, \lambda)$ (resp., $E \in (\Lambda^*, e^r, \lambda)$), which is absurd because $Ee^r = e^1$ for each r.

4. Applications to the special spaces.

PROPOSITION 1. If c is Λ -conullable in Λ under $\{x^r\}$ then $(\Lambda, x^r, c) = (\Lambda, w^r, c)$ and $\Lambda = \Gamma_c$. Moreover, c is never Λ^* -conullable in any Λ under any $\{x^r\}$.

PROOF. Since c is both contractive and repeating, each contractive matrix has a right inverse in $\Gamma_c \subseteq \Lambda$. Therefore, by part (i) of Corollary 1, if c is Λ -conullable in Λ under $\{x^r\}$ then $(\Lambda, x^r, c) = (\Lambda, w^r, c)$. But then, by part (iii) of Theorem 1, $\Lambda = \Gamma_c$ and so the proof of the first statement is complete.

To prove the second statement assume that c is Λ^* -conullable in some Λ under some $\{x^r\}$. Since c is averaging (V is a regular Toeplitz

matrix), it follows from part (ii) of Corollary 1 that $(\Lambda^*, x^r, c) = (\Lambda^*, w^r, c)$. Using again part (iii) of Theorem 1 we then get that $(\Gamma_c^*, x^r, c) = (\Gamma_c^*, w^r, c)$. But this is impossible because (Γ_c^*, w^r, c) is not an ideal in Γ_c . Indeed, define $A = (a_{nk})$, $B = (b_{nk})$, and $C = (c_{nk})$ by the set of equations:

$$a_{nn} = -a_{n,n+1} = 1;$$

$$b_{nk} = (-1)^k / 2^n \text{ for } \sum_{i=1}^{n-1} 2^i < k \le \sum_{i=1}^n 2^i;$$

$$c_{21} = -c_{22} = 2;$$

$$c_{2n,k} = -2 \text{ for } 1 + \sum_{i=1}^{k-3} 2^i < n \le 1 + \sum_{i=1}^{k-2} 2^i;$$

$$= +2 \text{ for } 1 + \sum_{i=1}^{k-2} 2^i < n \le 1 + \sum_{i=1}^{k-1} 2^i.$$

Then all three matrices belong to Γ_c , $A \in (\Gamma_c^*, w^r, c)$, $B \in (\Gamma_c^*, w^r, c)$, and BC = A. This completes the proof.

Let θ denote the set of compact matrices in Γ_v .

PROPOSITION 2. If v is Λ -conullable (resp., Λ^* -conullable) in Λ under $\{x^r\}$, then $(\Lambda, x^r, v) = (\Lambda, w^r, v) = \theta$ (resp., $(\Lambda^*, x^r, v) = (\Lambda^*, w^r, v) = \theta$) and $\Lambda = \Gamma_v$.

PROOF. v, like c, is contractive, repeating, and averaging. Thus, as in the preceding proof, we may use Corollary 1 and part (iii) of Theorem 1 to conclude that $(\Lambda, x^r, v) = (\Lambda, w^r, v)$ (or that $(\Lambda^*, x^r, v) = (\Lambda^*, w^r, v)$ in case v is Λ^* -conullable) and that $\Lambda = \Gamma_v$. But Sember [2] has shown that $(\Gamma_v, w^r, v) = \theta$, and so the proof follows from the observation that $(\Gamma_v, w^r, v) \supseteq (\Gamma_v^*, w^r, v) \supseteq \theta$.

It has already been pointed out (in the remarks preceding Lemma 3) that l^p $(p \ge 1)$, c_0 , and γ are never Λ -conullable in Λ under any $\{x^r\}$. We now show that the same is true for Λ^* -conullity. For the sake of completeness, however, we include the statement about Λ -conullity each time.

PROPOSITION 3. Let λ be either c_0 or m. Then λ is neither Λ -conullable nor Λ^* -conullable in any Λ under any $\{x^r\}$.

PROOF. This follows immediately from Corollary 2.

Since l and γ are both contractive and expansive, each contractive matrix in Γ_l (resp., Γ_{γ}) has a right inverse in Γ_l (resp., Γ_{γ}) and so the next result is an immediate consequence of Corollary 3.

PROPOSITION 4. Let λ be either l or γ . Then λ is neither Γ_{λ} -conullable nor Γ_{λ}^* -conullable in Γ_{λ} (=B[λ]) under any $\{x^r\}$.

PROPOSITION 5. Let λ be any one of the l^p spaces, p>1. Then λ is neither Γ_{λ} -conullable nor Γ_{λ}^* -conullable in Γ_{λ} (= $B[\lambda]$) under any $\{x^r\}$.

Proof. We need only prove that λ is not Γ_{λ}^* -conullable.

Fix p>1, let $\lambda=l^p$, and let q be conjugate to p, i.e. 1/p+1/q=1. Define $A=(a_{nk})$ and $B=(b_{nk})$ by the set of equations:

$$a_{nk} = 1/2^n \text{ for } \sum_{i=1}^{n-1} 2^{[iq]} < k \le \sum_{i=1}^n 2^{[iq]};$$

$$b_{nk} = 1/2^{[n(q-1)]} \text{ for } \sum_{i=1}^{k-1} 2^{[iq]} < n \le \sum_{i=1}^{k} 2^{[iq]},$$

where [x] denotes the smallest integer which is greater than or equal to x. Then a straightforward computation shows that A and B belong to Γ_{λ} and that AB = I, the identity matrix. Moreover, $A \in (\Gamma_{\lambda}^*, e^r, \lambda)$ and so $(\Gamma_{\lambda}^*, e^r, \lambda)$ cannot be a proper ideal in Γ_{λ} . Hence, λ cannot be Γ_{λ}^* -conullable in Γ_{λ} under $\{x^r\}$. Indeed, since λ is contractive and expansive, each contractive matrix has a right inverse in Γ_{λ} and so, by Theorem 3, if λ were Γ_{λ}^* -conullable in Γ_{λ} under some $\{x^r\}$ then $(\Gamma_{\lambda}^*, x^r, \lambda) = (\Gamma_{\lambda}^*, e^r, \lambda)$, which is not possible.

REFERENCES

- 1. H. I. Brown, D. R. Kerr and H. H. Stratton, The structure of B[c] and extensions of the concept of conull matrix, Proc. Amer. Math. Soc. 22 (1969), 7-14.
- 2. J. J. Sember, A note on conull FK spaces and variation matrices, Math. Z. 108 (1968), 1-6.
- 3. A. K. Snyder, Conull and coregular FK spaces, Math. Z. 90 (1965), 376-381. MR 32 #2783.
- 4. A. Wilansky, Functional analysis, Blaisdell, Waltham, Mass., 1964. MR 30 #425.
- 5. ——, Topics in functional analysis, Lecture Notes in Math., no. 45, Springer-Verlag, Berlin and New York, 1967. MR 36 #6901.
- 6. ——, Topological divisors of zero and Tauberian theorems, Trans. Amer. Math. Soc. 113 (1964), 240-251. MR 29 #6222.

STATE UNIVERSITY OF NEW YORK, ALBANY, NEW YORK 12203