
CONULLITY OF OPERATORS ON SOME  PA'-SPACES
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Abstract. The notion of conullity for a subclass of the algebra

of matrix operators on the space of convergent sequences is well

known in summability theory. In this paper the space of convergent

sequences is replaced by a general (locally convex) FK-space and

the following question is studied: Given a subalgebra of the algebra

of all continuous linear operators on this FK-space, is there a class

of operators in this subalgebra whose behavior is "conull-like"?

The question is answered in the case when the FK-space has a suit-

able (Schauder) basis and also in some other special cases.

1. Introduction. The algebra, rc, of complex matrix operators on

the set c of convergent complex number sequences is partitioned into

two classes: the conull matrices and the coregular matrices. (See,

for example, [l].) The class of conull matrices, denoted by \[/, may

be characterized either as the kernel of the only nontrivial multipli-

cative linear functional on Tc ([l]; see also [6]), or as the set {^GT^

wr—>0 weakly in Ca }, where Ca denotes the summability field of A and

wr= e—Y^k=\ ek, for r = 1, 2, ■ • • . (As usual, e= (1, 1, 1, • • • ) is the

unit sequence and ek= (0, • • • , 0, 1, 0, • ■ • ) is the sequence having

a 1 in the feth coordinate and zeros elsewhere.) Since the kernel of a

multiplicative functional is an ideal, the first characterization dis-

plays an algebraic likeness between the set of conull matrices and the

zero matrix (in the sense that AxpC^ and \pACLip for each A in rc,

just as ^4J0}ci{0} and JOJ^CJO), where 0 denotes the zero

matrix). The second characterization displays a topological likeness

between ip and the zero matrix (because wr—>0 weakly in 5, the set of

all complex number sequences, and s is the summability field of the

zero matrix). In this paper we replace c by a more general (locally

convex) FK-spa.ce X and we replace Te by the set I\ of matrix opera-

tors on X. We then consider the following question: Given an algebra

A which contains V\ and which is contained in the set P[X] of all

continuous linear operators on X, is there a class of operators in A

whose behavior is "conull-like"? By "conull-like" we will mean that

the class resembles the zero matrix in both an algebraic and a topo-
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logical sense. In order to make this more precise we first give an

equivalent reformulation of the second characterization of \p.

Recall that if A(E.TC and /£ci, the dual space of Ca, then / has

representation3 [4, p. 230]

f(x) = g(Ax) + Y^&kXk,
k

where g is a continuous linear functional on c and £* |/8*| < oo. But

oo

lim 23 PkWk = lim  £ ft = 0
t        k r   k=r+l

and so W—»0 weakly in ca if and only if Awr^>0 weakly in c. Thus,

\p may be characterized as being precisely the set

{A £ rc: A wT —> 0 weakly in c, as r —» oo J.

(Notice that this equivalent reformulation also displays a topological

likeness between \p and the zero matrix in the sense that it shows that

each A in \p maps a sequence, each of whose elements is at a distance

of one from the zero sequence, into a weakly convergent to zero

sequence.)

Now let X be an FK -space, {xr:r=l, 2, • • • } a subset of X, and

A a subalgebra of B [X] which contains T\. Furthermore, let

(A, xr, X) = {A £ A: Axr —> 0 weakly in X, as r —> oo }.

We say that " [xr] in X acts like \wr] in the sense of Wilansky," and

write xr~X, if xr—->0 in 5 but xr-t->0 weakly in X. (See [5, p. 90].) We

can now make precise what we mean by "conull-like" by reformulat-

ing our original question as follows: given X and A, does there exist

a subset {xT} of X such that xr~X and such that (A, xr, X) is a proper

ideal in A? If the answer is affirmative, that is, if xr-~X and if (A, xr, X)

is a proper ideal in A, then we say that X is A-conullable in A under

{xr\. For example, c is rc-conullable in Yc under {wr} because wr~c

and (rc, wT, c) =i{/ is a proper ideal in Tc.

The zero matrix satisfies a stronger property; namely that 0xr—>0

in the topology of X. This motivates the following definition. If

#r~X and if the set

(A*, xr, X) = {A £ A: Axr -> 0 in X, as r -> oo }

is a proper ideal in A, then we say that X is A*-conullable in A under

3 Unless otherwise specified, all summations are from 1 to <».
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It is clear that for each X, A, and xr in X, (A*, xr, X) is a subset of

(A, xr, X).

In the course of our work we establish the following results. (All

as yet undefined symbols will be defined in §2.)

(i) If [er\ is a (Schauder) basis for X (for example, if X is l" (p^l),

Co, or 7), then X is not Tx-conullable in I\ ( = P[X]) under  {er\.

(ii) If {u, ek\k — \, 2, ■ • • } is a (Schauder) basis for X (for ex-

ample, \iu = e and X is either com), then (A, z'', X) is always a class of

matrices, where zT = u — 2^*=i Uuek. Furthermore, X is A-conullable in

A under \zr\ if and only if A = I\. In other words, A-conullity of X

under \zT] is, and only is, a matrix notion whenever \u, ek\ is a basis

forX.
(iii) If X is either c or v, and if X is A-conullable under {xr} in A,

then A = I\ and (A, xr, X) = (A, wT, X). That is, A-conullity in either c

or v is a unique matrix concept.

(iv) m is not A-conullable in any A under any \xr\.

(v) If X is lp (p^l), Co, y, c, or m, then X is not A*-conullable in any

A under any {xr}. However, if X is v then the only A and {xr} which

make v A*-conullable in A under {xrJ are r„ and {w}; moreover,

(T*, wT, v) = (Tv, W, v)—6, where 6 denotes the set of compact

matrices on v.

Since the set of compact operators in B [X ] is always an ideal and

since a compact operator resembles the zero matrix in how it maps

sets, an argument could be made for selecting the set of compact

operators as representing the "conull-like" class of operators. How-

ever, from a summability point of view this is not satisfactory be-

cause conullity is an invariant property, i.e. if A is conull and X^ —\b

then B is also conull (the case when X = c is very well known), whereas

compactness is not an invariant property. For example, take X to

be 7 (the set of convergent series) and take A to be the matrix whose

first row is e and whose other entries are zero. Then A is a compact

operator on y and 7a (= {x:^4xG7}) is precisely 7. But 7 is also 7/,

where / is the identity matrix which, of course, is not compact.

2. Further definitions and notation. As usual, lp (p^ 1), m, c, Co, 7,

and v, respectively, denote the subsets of s consisting of those se-

quences x for which ^3* I xk\ p< ^ > sup*\xk\ < 00, lim* xk exists,

Urn* x* = 0, ^fc xk converges, and ^3* \%k— x*+i| < °°, respectively.

(In the particular case when p = 1 we will write / instead of I1.) The

/?-dual of an PX-space X, denoted by X", is the set

X" = </3 G s; ^ pkxk converges for all x G A ( ■
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By the Banach-Steinhaus Closure Theorem, 52* ftx* defines a mem-

ber of the dual space X' of X for each /3£X". We assume, throughout

this paper, that all FK -spaces contain all the finite sequences and

that the composition of any two members of T\ is given by matrix

multiplication. (This is the case if either \ek\ is a Schauder basis for

X, or if Y\ is a ring under matrix multiplication and {ek} is a Schauder

basis for X3.)

All increasing subsequences of positive integers are denoted by

{nk) or, for convenience, by {n(k)). The letter V is reserved for the

matrix (vnk) defined by the set of equations

vnk = l/n    for (n - l)«/2 < k ^ n(n + l)/2.

(Throughout this paper all undesignated entries in matrices and

sequences are assumed to be zero.)

Let X be an PK-space. We say that X is:

averaging if, given x£X then y £X whenever yk = xk/n for (n — l)n/2

<k^n(n + l)/2;
contractive if, given {&,} and x£X then y£X whenever y» = £*(,);

repeating if, given {&,} and x£X then y£X whenever yk=Xi for

ki^k<ki+i;
expansive if, given  {&,}  and x£X then y£X whenever y,fc(i) = *.••

We remark here that each of the special spaces mentioned earlier

is at least averaging and contractive.

A matrix A = (a„k) is called:

contractive if, given {k„\ then a„,i(„) = 1;

repeating if, given {«,} then an, = l for w,^«<«,+i;

expansive if, given {«,•} then a»(,),,= l.

Thus, an PK-space X is averaging if and only if F£Tx; it is con-

tractive (resp., repeating or expansive) if and only if Tx contains all

contractive (resp., repeating or expansive) matrices.

3. General results. As mentioned above X always represents an

FK -space containing the finite sequences, A represents a subalgebra

of B [X] which contains T\, and composition in T\ is matrix multipli-

cation.

Lemma 1. (A, xr, X) and (A*, xr, X) are left ideals in A.

Proof. Let ,4£(A, xr, X) and P£A. Then (BA)xr = B(Axr) and,

since B is continuous, B(AxT)—>0 weakly in X. Thus, BA £(A, xT, X).

Similarly, (A*, xr, X) is a left ideal in A.

Lemma 2. If xr~\ and if (A, xT, X) is a right ideal in A, then 52* ftxl
—>0/or each j3£X*. A similar result holds if (A*, xr, X) is a right ideal in

A.
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Proof. Let E = (e„*) be the matrix defined by setting en — 1 and

enk = 0 if either ra^l or k^l. Since xr~X, £G(A*, x", X)CT(A, xr, X).

Given any j3GX", define B = (bnk) by setting bu=Pk. Then PGPx and

EB=B. Hence, if (A*, xr, X) (resp., (A, xT, X)) is an ideal, then

PG(A*, xr, X) (resp., PG(A, xr, X)). Moreover, Bxr = e1 5> PkXTt and

so f(BxT) =f(e1) ^k (3kXTt-^>0 for each /GX'. Since we may choose / so

that fie1) 5^0 the proof of the lemma is complete.

Corollary. If X' =X" then X is not A-conullable in any A under any

Since X' =XS whenever {e*} is a basis for X, we see that, in particu-

lar, /" (p^l), Co, and 7 are never A-conullable in A under any \xr).

Lemma 3. Let \u, ek:k = l, 2, • • • } be a basis for X and let zT=u

— 2t=i M*e*- Then X* Pkzl-^>0for eachfi&P.

Proof. If j3GX" then ^T-r+i PkXk—*0, as r—> °o, for each xGX. Thus,

2* &z* = Et"=r+i |8*w*—>0, as r—»=0 .

Lemma 4. £e< \u,ek) be a basis for X and ZeJ PGP [X]. Then TEX\

if and only if ]>^* Uk(Tek)n converges and equals (Tu)n for each n.

(The special case when X = c and u = e was proved by Wilansky

[6]. Our proof is essentially his and we present it here for the sake of

completeness.)

Proof. If xGX then x has the representation x=a0«+ 2* a*e* f°r

some unique sequence of scalars a0, a.\, a2, • • • . Since coordinates are

continuous in X the representation becomes x =ctoU + ^* (x* — a.oUk)ek.

Thus, for each PG-B[X], Tx=aoTu+ 2* (xk~aoUk)Tek and the

proof follows easily from this equation.

Theorem 1. Let {u, ek\ be a basis for X and let zr = u— >lt_i M*e*.

(i) (A, 3r, X), and hence (A*, zr, X), is contained in Y\for each A.

(ii) X is Tx-conullable in rx under {zT}.

(iii) If A^Tx then X is neither A-conullable nor A*-conullable in A

under {zr}.

Proof, (i) This is an immediate consequence of Lemma 4 because

if T(£ (A, zr, X) then (Pzr)„—>0, as r—> 00, for each n.

(ii) Notice first that zr~X because there exists /GX' satisfying

/(«) = 1 and/(eA) = 0 for each &. Also, if I denotes the identity matrix

then P$(rx, z\ X) and so (Tx, zr, X)^rx.

To show thatX is rx-conullable in rx under \zr\ it suffices, by Lem-

ma 1, to show that (rx, zr, X) is a right ideal. Thus, let PG(rx, zr, X),

/GX',  and  ^Gfx-  Since  Pzr—>0  weakly  in X,   ^kukf(Bek)  con-
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verges and equals/(Pm). Hence, the sequence {f(Bek)\ is a member

of X". (Indeed, if x£X then there exists a scalar ao such that x=ao«

+ ^2k (xk—a0uk)ek and so f(Bx) =a0f(Bu)+'£k (xk—a0uk)f(Bek)

= Y,kXkf(Bek).) Thus, if we define F=(fnk) by setting fa =f(Bek),
then P£rx and FA£TX. Let /3 denote the first row of FA. Then

/3£X" and, by Lemma 3, 52* /3*2j->0, as r^> oo. But 52*0*4 = ((P4)zr)i
and since matrix multiplication is composition, ((P4)zr)i= (.F(^4zr))i

= T,kf(Bek)(Az*)k=f(B(Az'-))=f((BA)zr), so that (P^)z'-^O weakly
in X. Hence, P^4 £ (A, zr, X) and so X is Tx-conullable in Tx under {zT}.

(iii) Without loss of generality we may assume that Uj^O for each

j. Now, for eachj, define Qi=(q}^c) by setting q{j = un/uj and <?L = 0

when k^j. Then for each x£X we have that Q'x= (xj/uj)uE\ and so

0y£rx. Moreover, Q'u=u, Q'e>=(\/uj)u, and Q>ek={0} if k^j.

Therefore, 0"''£(A, zr, X).

Assume that X is A-conullable in A under \zr\. Then (A, zT, X) is a

right ideal in A and so Q'T(u— 52*-1 ukeh)—»0 weakly in X, since

0/P£(A, zr, X) for each P£A. But Q'(Tu) = ((Tu)j/uj)u, Q'(Tek)

= ((Tek)j/uj)u and coordinates are continuous in X; hence, we have that

(Tu)j= 52* Uk(Tek)j. Since this holds for eachj, Lemma 4 shows that

P£P\. This contradicts the hypothesis that Tx^A and so X is not

A-conullable in A under {zr\. A similar argument may be used to

show that X is not A*-conullable in A under {zT).

Theorem 2. If X is A-conullable (resp., A*-conullable) in A under

{xr} then, for each ^4£A, (A, xr, X)C(A, AxT, X) (resp., (A*, xr, X)

C (A*, ^4xr, X)). If, in addition, A has a right inverse in A then (A, xr, X)

= (A, Ax', X) (resp., (A*, x\ X) = (A*, Axr, X)).

Proof. For each P£(A, xr, X) and each /£X' we have that

f(B(Axr)) =f(BA(xr)). Since (A, x", X) is a right ideal, P,4£(A, xr, X);

hence, B(Axr)^>Q weakly in X and so P£(A, vlxr, X).

Assume next that A' is a right inverse for A in A and let

P£(A, ,4xr, X). Then BA(xT) =B(Axr)-*Q weakly in X and so

BA £ (A, xr, X). Since (A, xr, X) is a right ideal, B = (BA)A'E(A, xr, X).

The parenthetical statements are proved analogously.

Lemma 5. Given xrEm, r = \, 2, • • • , there exists a contractive matrix

A such that AxrEc, r = \, 2, • •

Proof. Since each xr£w we may choose [kj] (by a diagonalization

process) so that limy xTMj) exists for each r. If A = (ank) is defined by

setting a„,i(„) = 1, then A is contractive and -4xr£c for each r.

Lemma 6. For each r=l, 2, • • • , let yr£c with lim* yl=ar. If yr—>0

in s and if {r,} is given then there exist a contractive matrix B, a subse-
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quence {rj } of {rj}, and a sequence {vr} of elements in the unit ball of I

with i;r'(J)—>0 in I, as /—><», such that

By" = arw> + vr   for r}- ̂  r < tj+\.

(Recall that w' = e- Xi-i ek-)

Proof. Choose ki so that \y\— «i| <l/2 for k^ki and then choose

r{ so that \ylm\ <l/2 whenever r}zr{. Having chosen k, and rj,

choose kj+i>kj so that \y\ —a&| <l/2y+1 for k^kj+i and l^r^rj

and then choose r'j+l>rj so that |y*«>| <1/2J+1 whenever r}tr'}+i

and i — 1, 2, ■ ■ ■ , j'+l. Then the matrix B = (&„*), defined by setting

6y,*(y> = l 0 = 1, 2, • • • ), is contractive and satisfies the conclusion of

the lemma.

Lemma 7. Let \vr} be a sequence of elements in the unit ball of I such

that z>r—>0 in s. Then there exist {rj}, a contractive matrix B, and a se-

quence of scalars {cr} with sup|cr| :gl, such that

Bvr = cre> + y'   for rj ^ r < r3+i,

where each yr(El o,nd yT—>0 in I, as r—> °o.

Proof. Choose ki so that / ,t°°,i-m \vl\ <l/2 and then choose ri so

that \vTtm\ <l/2 whenever r>.ri. Having chosen kj and r,-, choose

kj+i>kj so that ^2i=ku+i) \vTk\ <l/2m for rtkr, and then choose

rJ+i>rj so that \xrm\ <l/2,+1 whenever r^rj+i and * = 1, 2, • • ■ ,

j + 1. Then the matrix B = (b„k), defined by setting &/,*o) = l

(j=l, 2, • • •), is contractive and satisfies the conclusion of the

lemma.

Lemma 8. Given \nk\ there exists a contractive matrix A such that

Ae"<-k) =ek for each k.

The proof of this lemma is straightforward and so we omit it.

Theorem 3. Let XD/ and suppose that whenever {wr} is a subset of\

then it is a bounded subset of X. Let I'Gw (r = 1, 2, • • ■ ) and assume

also that X is contractive and is such that each contractive matrix has a

right inverse in A. Then, if X is A-conullable {resp., A*-conullable) in

A under {xr}, either

(A, x% X) = (A, e', X)    (resp., (A*, x', X) = (A*, e\ X))

or

(A, x% X) = (A, w% X)    (resp., (A*, x', X) = (A*, W, X)).

Proof. We shall only prove the theorem for the case when X is

A-conullable. The proof for the other case is analogous.
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By Lemma 5 there exists a contractive matrix A such that yr

— AxrEc for each r, and, by Theorem 2, since A has a right inverse

in A, (A, xT, X) = (A, yr, X). Notice that yT—*0 in 5 because xr—>0 in 5.

If ar = \imk y\ then there are two cases to consider. Either there exists

{r,} such that ar{j)—*a^0, as j—> oo , or else aT—>0, as r~> go .

In the first case, by Lemma 6, there exists a contractive matrix P,

a subsequence {r/ } of {r,-} and sequences z;r in the unit ball of Z with

vT'U)^0, as 7—>o°, such that Pyr=arw,'+nr for rj ^r<r'J+1. Hence,

using Theorem 2 (since P has a right inverse in A) we get

(A, x\ X) = (A, y, X) = (A, arw' + »', X),

where rj ^r<r'j+l. But vr'a)—»0 inX (because z)r'o)—>0 in Z and XD/ [4,

p. 203, Corollary l]) andaro')—>0,as.;'—>co ; hence, (A,xr,X) = (A, wr,\).

In the second case we have that ar—>0, as r—> co. Using Lemma 6

and Theorem 2 as in the first case (this time with 7+ the given subse-

quence) we again obtain a contractive matrix B and sequences i»r

such that

(A, xr, X) = (A, y, X) = (A, ByT, X) = (A, arw' + vr, X).

But, by hypothesis, \wr) is a bounded subset of X (whenever it is a

subset of X) and so arwy—>0 in X, as r—> oo . Hence, (A, xr, X) = (A, V, X).

By applying Lemma 7 and Theorem 2 to {vr} (the way Lemma 6 and

Theorem 2 are applied to {yr}) and then using Lemma 8 we finally

get that (A, xr, X) = (A, eT, X), and the proof is complete.

Corollary 1. Let X, A, and {xr} satisfy the hypothesis of Theorem 3

and assume that either

(i) X2ZP for some p>\, or that

(ii) X is averaging and repeating.

If X is A-conullable in A under {xr} then

(A, x', X) = (A, wr, X) ?± (A, eT, X).

7/X satisfies case (ii) and if\ is A*-conullable in A under {x'\, then

(A*, V, X) - (A*, w\ X) ^ (A*, e, X).

Proof. Assume first that X3/p for some p>\. Since er-^0 weakly

in /p, er-^0 weakly in X. (Indeed, XZ)^P and so each/£X' is also con-

tinuous on /p [4, p. 203, Corollary l].) The conclusion now follows

easily from Theorem 3.

Assume next that X is averaging and repeating. Then F£Tx and

VA = 7, where A = (a„k) is defined by the set of equations

ank = 1    for *(* - D/2 < » = *(* + D/2.
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Since A is repeating, A also belongs to Tx; hence, neither (A*, er, X)

nor (A, er, X) is an ideal and the conclusion follows once again from

Theorem 3.

Corollary 2. Let\, A, and [xr\ satisfy the hypothesis of Theorem 3.

If X is also averaging, repeating, and expansive then X is neither A-

conullable nor A*-conullable in A under \xr\.

Proof. Define A'=(a'nk) and A"=(a'^) by setting <,3B-2=ffl^3»-i

= 1. Since X is contractive, A' and A" belong to TXCA. Hence,

A =A'—A" also belongs to Tx. Now A has a right inverse in A. In-

deed, define B = (bnk) by 634-2,* =1- Then PGTXCA (because X is

expansive) and AB = I. Moreover, Aw3r~2=— er and Awn = 0 if

n9£3r — 2 for some r. Thus, if X were A-conullable (resp., A-conul-

lable) in A under {xr}, then (by part (ii) of Corollary 1) (A, xr, X)

= (A, vr, X)^(A, e\ X) (resp., (A*, x\ X) = (A*, vf, X)^(A*. er, X)),
while (by Theorem 2) (A, wr, X) = (A, AwT, X) = (A, eT, X)

(resp., (A*, wr, X) = (A*, Awr, X) = (A*, eT, X)). Since these two conclu-

sions contradict each other the proof of the corollary is complete.

Corollary 3. Let x"£zmfor each r and let X be contractive with X3/

and eGX". If every contractive matrix has a right inverse in A then X is

neither A-conullable nor A*-conullable in A under \xr\.

Proof. Since eGX", W^X for each r. Suppose that X is A-conullable

(resp., A*-conullable) in A under \x'}. Then, by Theorem 3,

(A, x', X) = (A, e\ X) (resp., (A*, x\ X) = (A*, er, X)). Let E = (enk)

be a matrix such that eu = l for each k. Then EG (A, xr, X)

(resp., PG(A*, xr, X)) because eGX^ and x\—>0, as r—»«>. Thus,

EG (A, er, X) (resp., £G(A*, er, X)), which is absurd because Eer = el

for each r.

4. Applications to the special spaces.

Proposition 1. If c is A-conullable in A under {xr} then (A, xT, c)

= (A, wr, c) and A = TC. Moreover, c is never A*-conullable in any A

under any {xr}.

Proof. Since c is both contractive and repeating, each contractive

matrix has a right inverse in rcCA. Therefore, by part (i) of Corollary

1, if c is A-conullable in A under {xr} then (A, xr, c) = (A, wr, c). But

then, by part (iii) of Theorem 1, A = rc and so the proof of the first

statement is complete.

To prove the second statement assume that c is A*-conullable in

some A under some {xr J. Since c is averaging (V is a regular Toeplitz
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matrix), it follows from part (ii) of Corollary 1 that (A*, xr, c)

= (A*, wr, c). Using again part (iii) of Theorem 1 we then get that

(Tc, xr, c) = (rc, wr, c). But this is impossible because (r*, wr, c) is not

an ideal in Tc. Indeed, define A = (ank), B = (bnk), and C= (cnk) by the

set of equations:

Ann = &n,n+l =  1;

bnk = (~ 1)72" for £ 2' < k ^ £ 2';
»=i »-i

c2i = — c22 = 2;

fc-3 k-2

C2n,k = - 2 for 1 + 52 2* < » = 1 + E 2*,
«=i »=i

*-2 *-l

= + 2 for 1 + 52 2* < » = 1 + 52 2i-
»=i »=i

Then all three matrices belong to Tc, A^(T*, wr, c), BE(Y*, W, c),

and BC = A. This completes the proof.

Let 6 denote the set of compact matrices in Yv.

Proposition 2. If v is A-conullable (resp., A*-conullable) in A under

{xr\, then (A, xr, v) = (A, wr, v) =6 (resp., (A*, xr, v) = (A*, wr, v) =6)

and A=r„.

Proof, v, like c, is contractive, repeating, and averaging. Thus,

as in the preceding proof, we may use Corollary 1 and part (iii) of

Theorem 1 to conclude that (A, xr, v) = (A, wr, v) (or that (A*, xr, v)

= (A*, wT, v) in case v is A*-conullable) and that A = r„. But Sember

[2] has shown that (r„, wr, v) =6, and so the proof follows from the

observation that (r„, wr, v)^(T*, wr, v)^.B.

It has already been pointed out (in the remarks preceding Lemma

3) that l" (p = 1), Co, and 7 are never A-conullable in A under any {xr}.

We now show that the same is true for A*-conullity. For the sake of

completeness, however, we include the statement about A-conullity

each time.

Proposition 3. Let X be either c0 or m. Then X is neither A-conullable

nor A*-conullable in any A under any \xr\.

Proof. This follows immediately from Corollary 2.

Since Z and y are both contractive and expansive, each contractive

matrix in Tj (resp., Yy) has a right inverse in T; (resp., Ty) and so the

next result is an immediate consequence of Corollary 3.
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Proposition 4. Let X be either I or y. Then X is neither Y\-conullable

nor T*-conullable inT\ ( = P [X]) under any {xr}.

Proposition 5. Let X be any one of the l" spaces, p>\. Then X is

neither Y^-conullable nor T*-conullable inT\ ( = B [X]) under any {x'\.

Proof. We need only prove that X is not r*-conullable.

Fix p>l, let X = /p, and let q be conjugate to p, i.e. l/p + l/q=l.

Define A = (ank) and B = (bnk) by the set of equations:

n—1 n

ank = 1/2" for 52 2i« < k g 52 2<*l;

*-i *
*„* = l/2'"<«-»l for 52 2(ial < w = 52 2[i?1,

»=i »=i

where [x] denotes the smallest integer which is greater than or equal

to x. Then a straightforward computation shows that A and B belong

to Tx and that AB = I, the identity matrix. Moreover, ^4£(r*, er, X)

and so (rx, er, X) cannot be a proper ideal in Tx. Hence, X cannot be

r*-conullable in T\ under {xr}. Indeed, since X is contractive and

expansive, each contractive matrix has a right inverse in I\ and so,

by Theorem 3, if X were r*-conullable in Y\ under some {xr\ then

(r*, xr, X) = (r*, er, X), which is not possible.
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