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In [l] Rogers discusses the Medvedev lattice of mass problems

and states that its cardinality is unknown. In this note we simply

show

Theorem. The Medvedev lattice has 2° members; in fact there is a set

of pairwise incomparable elements of cardinality 2C.

Proof. Let Q,C.NN be a set of cardinality c of functions of incom-

parable Turing degree [2]. Let A be a family of subsets of a of

cardinality 2° which are incomparable with respect to inclusion (such

a family exists by identifying Q, with the reals and letting A be the

family of all Hamel bases—this observation is due to Nerode). Then

distinct members of A have incomparable Af-degree for suppose (Bi

and 032 are in A and are distinct and further suppose that there is a

recursive operator <£> with $((B2)C(B1. Let/£032 — (&i (since (B2 is not a

subset of (Bi) then <£>(/) y^f and both are in & contradicting the fact

that the elements of a have incomparable Turing degree.

This result was also found independently by Elizabeth Jockusch

and John Stillwell.
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