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Abstract. A type of ring extension is considered that was intro-

duced by J. Szendrei and generalizes many familiar examples,

including the complex extension of the real field. We give a method

for constructing a large class of examples of this type of extension,

and show that for some rings all possible examples are obtained by

this method. An abstract characterization of the extension is also

given, among rings defined on the set product of two given rings.

This paper is a sequel to [2 ], in which a class of examples was given

of a type of ring extension defined in terms of two functions. Here we

exhibit some other functions that may be used to construct such

extensions, and show that in certain cases (in particular, when the

first ring is an integral domain and the second is a commutative ring

with identity), the functions must have a prescribed form. We also

characterize this type of ring extension, which Szendrei defined di-

rectly by the ring operations, in terms of the manner in which the

two given rings are embedded in the extension.

The reader is referred to [2] for background. Only the basic defini-

tion is repeated here.

Let A and B be rings. We define the ring A*B to be the direct sum

of A and B as additive groups, with multiplication given by

(1) (a,b)(c,d) = (ac+ {b,d},aad + b<rc+ bd),

where a is a homomorphism from A onto a ring of permutable bimul-

tiplications of B, and { •, • } is a biadditive function from BXB into

A satisfying the equations

(2) bo-{c, d) = o-[b. c)d,

(3) {b,cd\ = {bc,d\,

(4) {b,aac\ = {baa,c\,

(5) \o-ab,c} = a{b,c},    and        {&,c<ra} = \b,c\a,

for all a£^4 and all b, c, dEB. As noted in [2], when B has an iden-

tity, (4) is redundant. The inverse of a homomorphism (p will be de-

noted by </>', even when </> is not a monomorphism.
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We first characterize those rings on the set product A XB that

have the form A*B, making only one natural assumption about the

addition operation. The following concept will be required.

Definition 1. Let A, B, and E be rings and let i:A—>E,j:B—>E

be injections. If j(b+d) =j(b)+j(d) and j(b)j(d) —j(bd)Ei(A) for all

b, dEB, we say that B is embedded in £ as a subring modulo A.

Proposition 1. Let A and B be rings, and assume that AXB has

been made into a ring E such that (a, b) = (a, 0) + (0, b) for all (a, b)

EA XB. Then E has the form A*B if and only if A is embedded as a

subring and B is embedded as an A-bimodule and as a subring modulo A.

Proof. It is evident that if £ has the form A*B, then A is em-

bedded as a subring and B as an abelian group. Since (a, 0)(0, b)

= (0, o-ab) and (0, b)(a, 0) = (0, baa) for all aEA and bEB, it follows

from the associative and distributive laws in A*B that B is embedded

as an A -bimodule; and since (0, b)(0, d) = ({b, d}, 0) + (0, bd) for all

b, dEB, it is embedded as a subring modulo A.

For the converse, first note that for all a, cEA and b, dEB,

(a, b) + (c, d) = (a, 0) + (0, b) + (c, 0) + (0, d) = (a+c, 0) + (0, b+d)
= (a+c, b+d), and (a, 0)(c, 0) = (ac, 0), (a, 0)(0, d) = (0,f(a, d)),

(0, b)(c, 0) = (0, g(b, c)), (0, b)(0, d) = (h(b, d), 0) + (0, bd) = (h(b, d), bd)
for some functions/, g, h, so that (a, b)(c, d) = (a, 0)(c, 0) + (a, 0)(0, d)

+ (0, b)(c, 0) + (0, b)(0, d) = (ac + h(b, d),f(a, d)+g(b, c)+bd). The
associative and distributive laws in £ imply that the functions/ and

g yield a homomorphism a from A onto a ring of permutable bimul-

tiplications of B, defined by aad=f(a, d), bac = g(b, c). These laws

also yield the facts that h is a biadditive function and that (2)-(5)

are satisfied. Hence we may write h(b, d)= {b, d}, and (a, b)(c, d)

= (ac+{b, d}, aa.d+bac+bd). Thus, £ has the form A*B.

Remarks. 1. Of course, the .4-bimodule and ring multiplications

on B are related by the associative law in £, as seen in the proof.

2. If it is not assumed that B is embedded as a subring modulo A,

one has (0, b)(0, d) = (h(b, d), k(b, d)) for some functions h, k. It fol-

lows that k is biadditive; but it is not possible to show that k is asso-

ciative unless (2) is assumed, since both identities can be deduced only

from a single equation implied by the associativity of the product

(0, b)(0, c)(0, d).

3. If B is actually embedded as a subring, then it is embedded as

an ideal. For in this case { •, •} =0, so we get a splitting Everett

extension.

Some generality is gained in our main result by use of the following

concept.
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Definition 2. We say that two rings B and (B, •) with the same

additive group and multiplications (b, c)>—>bc, (b, c)^>b-c are com-

patible if (b-c)d = b-(cd) = (bc)-d = b(c-d) for all b, c, dEB.
Example 1. Let p be a fixed element in the center of a given ring

B, and let Bp denote, as in [2], the ring with the same additive group

as B and with multiplication defined by the mapping (b, c)*-*pbc.

Then B and Bp are compatible. In particular, B and the zero-ring BB

are compatible.

Theorem. 7-e/ A and B be rings, (B, •) a ring compatible with B, and

<f>: A —>B a homomorphism. Let s be an element in the center of B such

that (s)CIm <f>, and q an element in the center of <p'((s)) and in the

annihilator of Ker <p. Define <r by

(6) o-ab = 4>ia)b,   baa = bd>ia),   for all a £ A,   b £ B,

and {•, •} by

(7) \b,c) = q<j>'isbc),   forallb,cEB.

Then with multiplication defined by (1), one obtains a ring extension

A*iB, ■).
Conversely, if B is a ring with identity, and a ring extension A*B is

given, then <r is defined by (6) for some homomorphism <p\A^>B. Fur-

thermore, if il)<pisan epimorphism, then { •, • } is defined by (7), with

q= { 1, 1 } and 5 = 1; or if (II) B is commutative and there exist q, rEA

such that rq—\l, 1 J, (0(r))CIm 4>, and r is not a zero-divisor, then

{ •, • } is defined by (7), with s=<p(r). In either case, q is in the center

of <b'((s)) and in the annihilator of Ker <p.

Proof. Clearly, a as defined in (6) is a homomorphism of A onto a

ring of permutable bimultiplications of (B, ■), and { •, ■ } as defined

in (7) is well-defined and biadditive. Noting that <p(q) is in the center

of (s), one checks easily that (2)-(5) are satisfied, so one obtains a

ring extension A*(B, ■) by using these functions in (1).

Now if B is a ring with identity it follows from [l, Proposition 4]

that every bimultiplication of B is inner; and if a ring extension A*B

is given, then l(<ral) = (lcr0) 1 for each aEA, so aa is multiplication on

the left and right by the same element of B. Hence <r is defined by (6)

for some homomorphism <p:A—>B.

Assume that cj> is an epimorphism, and for b, cEB choose b'E<b'(b)

and c'E<t>'(c). By (5), b'{l, 1 }c'= {<rt.l, lov| = {M, lc\ = {b, c),

whence \b, c\=b'qc' with q=\\, l\. A similar calculation gives

{\,b\ =qb', \b,l\ =b'q; but by (3), {l,b} = {b, 1}, so qb' = b'q, and
q is in the center of A =#'((1)). Since {1, b} =qb' = b'q for any choice
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of b', and {1, b} is well-defined, q is in the annihilator of Ker <p, and

we may write {b, c} =qcp'(bc).

Now assume that B is commutative and there exist q, rEA as in

(II).  For b, cEB, choose d'E<f>'(sbc). Then r{b, c} = {<p(r)b, c}
= {l, sbc} = {l, 1 }d' = rqd', whence {b, c} =qd'. Thus q is in the

left annihilator of Ker cp, and {b, c} = q<p'(sbc), that is, (7) holds.

Since (7) yields {1, 1} =q<f>'(s) =qr, we also have {b, c}r={b, ap(r)}

= {sbc, l}=d'{l, l}=d'qr. Hence {b, c} =d'q, and so d'q = qd'.

Therefore q is in the right annihilator of Ker <p and in the center of

*'((*)).

Corollary. Let A be an integral domain, and B a commutative ring

with identity. In any ring extension A*B, a is defined by (6) for some

homomorphism <p:A^>B. If {■, •} =0, then {■, •} is defined by (7),

with q, 5 = 0; if {•, • } ̂ 0, then <p is a monomorphism and {-, •} is

defined by (7), with q = l and s=<p({ 1, 1}).

Proof. The assertion about a is contained in the theorem, and the

first statement about {•, ■ } is obvious. If cp is not a monomorphism,

choose any nonzero a£Ker <p. Then for all b, cEB we have a{b, c}

= {<p(a)b, c} =0, whence {b, c} =0. Now assume that {•, • } f^0.

Since {b, c} = {1, be}, there is some dEB for which {1, d} y^0. By (2),

<p({l, l})d=cp({l, d})^£0, because <p is a monomorphism; hence

{l,l}^0.Setr= {1,1} and2 = l.Then<£(r)6 =c/>({ 1,1 })&=<£({l,&})
for all bEB, so (<p(r))C\m cp. The theorem now shows that {• , •} is

defined by (7), with q = \ and s=<j>({ 1, 1}).

Remarks. 4. A slight generalization of the last part of the proof

of the corollary shows that if cp(r) EIm(cp\ Im{ • , • }), then

(<p(r))Clm<j>: <p({b, c})d=<p({\,bc})d=<p({bc,d}) for all b, c, dEB,
so any rEA such that <p(r) =<p({b,   c}) satisfies (<p(r))Clm <p.

5. Obviously if Im <p is itself an ideal, it is easier to find an r satisfy-

ing hypothesis (II) of the theorem. In fact, if A has an identity, we

can pick r = l.

We now give several examples of ring extensions A*(B, •) by

specifying the homomorphism </> and elements q, s to be used in (6)

and (7). Except in Example 6, (B, -)=B.

Examples. 2. Let A be the algebra over the real field R generated

by an identity element 1 and an element a satisfying a2 = 0, and let

B=R(BR. Defined by <p(t+ua) = (t, 0) for t, uER, and choose g = a,

s= (1, 0). Note that {(h, ui), (t2, u2)} =hha and Im cp is an ideal. To

verify that hypothesis (II) of the theorem holds, one could choose

r = l.
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A similar example in which <p is an epimorphism is obtained by

simply setting B=R.

3. Let A be the ring of all continuous real-valued functions on

[—1, 1] assuming an even integer value at 1, and B the ring of all

continuous real-valued functions on [0, 1 ] assuming an integer value

at 1. Let <p be induced by restriction of functions to [0, l], s be the

constant function 2 on [0, l], and q be defined on [ — 1, l] by q(t) =0

for t^O and q(t)=2t for t^Q. Note that {b, c) satisfies \b, c}(t)=0

for t^O and {b, c\ (t)=Ub(t)c(t) for /^0. Again Im <p is an ideal, and

here one could choose r to be the constant function 2 on [ — 1, l].

4. Let B be the ring of all polynomials in x over the real field, A the

subring of polynomials with rational constant term, 0 the natural

injection, q = l and s = x. Note that {b, c\ =xbc and Im tj> is not an

ideal.
5. Let A be the ring of integers and B any field of characteristic

not 2. In any ring extension ^4*73, we must have {•, •} =0: Other-

wise, if {b, c\ were the least positive integer in Im{ •, • }, we should

have [b/2, c\ =({b, c})/2, a contradiction. Thus in any ring exten-

sion A*B, { -, •} may be written as in (7), with q, 5 = 0, even though

hypotheses (I) and (II) of the theorem both fail to hold when the

characteristic of B is 0. (Compare this with the corollary and its

proof.)

6. Let A be the ring of all real-valued functions on a topological

space X, 1 + 2 the characteristic function of a nonempty subset Z of

X, B the ring of all real-valued functions on X — Z, and Bo the zero-

ring with the same additive group as B. Let cj> be the homomorphism

induced by restriction to X — Z, and choose 5 to be the constant func-

tion 1 on X — Z. Each element of A*Bo naturally determines a func-

tion onX — Z. Examining the addition and multiplication in the ring

obtained from A*Bo by evaluation of these functions at a point of

X — Z, we see that the functions on X — Z determined by the elements

of A*B0 are complex-valued. Let C be the subring of A of continuous

functions on X, and D the subring of Bo of continuous functions that

approach 0 on the boundary of X — Z in X. Using the same ring

operations on CXD, one obtains a subring of A*B0, and it may be

viewed as the ring of continuous complex-valued functions on X that

are real-valued on Z.

The last example shows that functions defined by (6) and (7) do

not yield directly a simple class of ring extensions, and suggests con-

sideration of some slightly different functions.

Proposition 2. Let B be an ideal in a ring A, Bp any compatible

ring as in Example 1, cj> an automorphism of A, and q an element of A
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that commutes with each element of Im(cj>'\B). Define a by

(8) o-ab = <p(a)b,    b<ja = b<p(a),   for alia £ A,b E B,

and { •, •} by

(9) {b,c} = q<j>'(bc),   forallb,cEB.

Then with multiplication defined by (1), one obtains ring extensions

A*B and A*BP.

The proof is again a straightforward verification.

Example 7. Let A be the ring of all continuous real-valued func-

tions on a topological space X, B the ideal of all functions in A that

vanish on a fixed nonempty subset Z of X, <p the identity automor-

phism on A, and q the constant function —1 onX. Then with a and

{ •, •} defined by (8) and (9), A*B0 is isomorphic to the ring of

continuous complex-valued functions on X that are real-valued on Z.
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