ON THE 1-1 SUM OF TWO BOREL SETS!
RICHARD B. DARST

ABSTRACT. It is shown that there exists a Borel subset B of the
real line and a homeomorphism ¢ of the real line such that the
set {x—¢(x); xEB} is not a Borel set.

Since the range, ¢(B), of ¢ is a Borel set, this result complements a
recent result [1] of Paul Erdés and Arthur H. Stone who showed that
there exist Borel subsets C, D of the real line whose sum C+D
= {x—i—y; x&EC, yED} is not Borel.

We begin a verification of our assertion by recalling that there exist
CBV (continuous, bounded variation) functions # on I=[0, 1] to I
such that card{y; card[F'(y)] > Ro} > N,.

For the reader’s sake, Arthur H. Stone very kindly contributed the
following direct and elementary construction of a suitable %. Define
h first on the usual Cantor ternary set C by

’ ( 2 a»'3_n> =2 a9
n=1 n=1

(where each of ai, az, - - - is 0 or 2), and extend % to I by making it

linear on each complementary interval. An elementary calculation

then shows

Ih(x)—h(y)l §3|x—y| forall x,y € I,

so that & is CBV; and clearly card [k=!(y) ] =¢ for each of the ¢ num-
bers y in £(C). Hence [2], there exists a Borel set 4 such that k(A4)
is not Borel. Recall that % can be represented as the restriction to I
of the difference, k1 —hs, of two homeomorphisms. Let B=5;(4) and
let ¢ =h2'hl—l.
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