CONCERNING PRODUCT INTEGRALS AND EXPONENTIALS

W. P. DAVIS AND J. A. CHATFIELD

ABSTRACT. Suppose S is a linearly ordered set, N is the set of real numbers, G is a function from $S \times S$ to N, and all integrals are of the subdivision-refinement type. We show that if $\int_a^b G^2 = 0$ and either integral exists, then the other exists and $a \prod^b (1+G) = \exp \int_a^b G$. We also show that the bounded variation of G is neither necessary nor sufficient for $\int_a^b G^2$ to be zero.

B. W. Helton, J. S. MacNerney, and H. S. Wall have established various relationships between integral equations, sum integrals, and product integrals. This paper establishes a relationship between exponentials, sum integrals, and product integrals which may be used to evaluate certain product integrals or sum integrals. Integrals used are of the subdivision-refinement type and complete definitions of these and other terms and symbols used in this paper may be found in [1] or [2]. Suppose S is a linearly ordered set [2] and N is the set of real numbers. All functions considered will be functions from $S \times S$ to N unless otherwise noted. In [1, Theorem 3.4] it is shown that for functions of bounded variation from $S \times S$ to N the following two statements are equivalent: (1) $\int_a^b G$ exists and (2) $_a \prod^b (1+G)$ exists. Under the hypothesis that $\int_a^b G^2 = 0$, we show that the following two statements are equivalent for functions from $S \times S$ to N: (1) $\int_a^b G$ exists and (2) $_{a}\prod^{b}(1+G)$ exists and is not zero. It is also noted that neither of the following two statements is a consequence of the other. (1) $\int_{a}^{b} G^{2} = 0$ and (2) G is of bounded variation on [a, b].

THEOREM 0. If $_{a}\prod^{b}(1+G)$ exists and is not zero then if $\epsilon > 0$ there is a subdivision D of $\{a, b\}$ such that if $D' = \{x_i\}_{i=0}^{n}$ is a refinement of D, then

$$\left|\log \frac{a \prod^{b} (1+G)}{\prod_{D'} (1+G_i)}\right| < \epsilon.$$

The proof of this theorem is omitted.

THEOREM 1. Neither of the following statements is a consequence of the other:

Received by the editors December 11, 1969.

AMS Subject Classifications. Primary 2645, 2649; Secondary 4513.

Key Words and Phrases. Exponentials, product integrals, subdivision-refinement type integrals, bounded variation.

(1) $\int_{a}^{b} G^{2} = 0.$

(2) G is of bounded variation.

INDICATION OF PROOF. Let G be the function such that for each $0 \le x \le 1, 0 \le y \le 1$,

G(x, y) = x, x = 1/n, *n* an integer, and $|x - y| \ge 1/n - 1/(n + 1)$, = 0, otherwise.

 $\int_0^1 G^2 = 0$ but G is not of bounded variation on [0, 1] and $\int_0^1 G$ does not exist. Hence (2) is not a consequence of (1).

Let *H* be the function such that for each $0 \le x \le 1$, $0 \le y \le 1$,

$$H(x, y) = 1, \quad x = 0, \quad y > x,$$

= 0, otherwise.

 $V_0^1 H = 1$ but $\int_0^1 H^2 = 1$. Hence (1) does not follow from (2).

The following theorem may be found in [2, p. 151] and may be established by induction.

THEOREM 2. If n is an integer greater than 1 and each of $\{A_i\}_{i=1}^n$ and $\{B_i\}_{i=1}^n$ is a sequence of numbers, then

$$\prod_{i=1}^{n} A_{i} - \prod_{i=1}^{n} B_{i} = \sum_{i=1}^{n} \left(\prod_{j=1}^{i-1} B_{j} \right) (A_{i} - B_{i}) \left(\prod_{k=i+1}^{n} A_{k} \right).$$

THEOREM 3. If $\int_a^b G^2 = 0$, then the following two statements are equivalent: (1) $\int_a^b G$ exists.

(2) ${}_{a}\prod^{b}(1+G)$ exists and is not zero. Furthermore, if either (1) or (2) is true, then $\int_{a}^{b} G = \log_{a}\prod^{b}(1+G)$.

PROOF. 1. Suppose (1) is true and $\epsilon > 0$. Since $\int_a^b G^2 = 0$ and $\int_a^b G$ exist then there is a subdivision D of $\{a, b\}$ such that if D' is a refinement of D, then there is a number k such that:

(1)
$$\sum_{D'} G_i^2 < \frac{1}{4} \text{ and hence } \left| G_i \right| < \frac{1}{2},$$

(2)
$$\sum_{D'} G_i^2 < \frac{\epsilon}{2 \exp\left(\frac{3}{2} + \int_a^b G\right)}$$

(3)
$$|k| < \frac{\epsilon}{8 \exp\left(\frac{3}{2} + \int_a^b G\right)},$$

(4) $|k| < \frac{1}{2}$, so if $n > m \ge 0$, $\exp(mk/n) < \exp(\frac{1}{2})$ and $\exp(-k) < \exp(\frac{1}{2})$,

and

(5)
$$\int_a^b G = \sum_{D'} G_i + k.$$

Let $D' = \{x_i\}_{i=0}^n$ be a refinement of D.

$$\begin{split} \sum_{i=1}^{n} \left| \exp\left(G_{i} + \frac{k}{n}\right) - G_{i} - 1 \right| \\ &= \sum_{i=1}^{n} \left| -1 - G_{i} + \sum_{j=0}^{\infty} \frac{(G_{i} + k/n)^{j}}{j!} \right| \\ &\leq \sum_{i=1}^{n} \left| \frac{k}{n} \right| + \sum_{i=1}^{n} \left| \sum_{j=2}^{\infty} \frac{(G_{i} + k/n)^{j}}{j!} \right| \\ &\leq \left| k \right| + \sum_{i=1}^{n} (G_{i} + k/n)^{2} \cdot \left(\sum_{j=2}^{\infty} \frac{1}{j!} \right) \\ &< \left| k \right| + \sum_{i=1}^{n} (G_{i} + k/n)^{2} \\ &\leq \left| k \right| + \frac{\epsilon}{2 \exp\left(\frac{3}{2} + \int_{a}^{b} G\right)} + \left| k \right| + \left| k \right| \\ &< \frac{7\epsilon}{8 \exp\left(\frac{3}{2} + \int_{a}^{b} G\right)} \cdot \end{split}$$

Therefore,

$$\sum_{i=1}^{n} |\exp(G_i + k/n) - G_i - 1|$$

$$< \frac{7\epsilon}{8 \exp\left(\frac{3}{2} + \int_a^b G\right)} \cdot$$

Then,

$$\begin{split} \left| \prod_{i=1}^{n} (1+G_{i}) - \exp\left(\int_{a}^{b} G\right) \right| \\ &= \left| \prod_{i=1}^{n} (1+G_{i}) - \prod_{i=1}^{n} \exp(G_{i} + k/n) \right| \\ &\leq \sum_{i=1}^{n} \left| \prod_{j=1}^{i-1} (1+G_{i}) \right| \cdot \left| \exp(G_{i} + k/n) - 1 - G_{i} \right| \cdot \left| \prod_{j=i+1}^{n} \exp(G_{i} + k/n) \right| \\ &\leq \sum_{i=1}^{n} \left| \prod_{j=1}^{i-1} \exp G_{i} \right| \cdot \left| \prod_{j=i+1}^{n} \exp(G_{i} + k/n) \right| \cdot \left| \exp(G_{i} + k/n) - 1 - G_{i} \right| \\ &= \sum_{i=1}^{n} \left| \exp\left(\sum_{j=1}^{n} G_{j} + k - G_{i} - k + ((n-i)/n)k\right) \right| \\ &\quad \cdot \left| \exp(G_{i} + k/n) - 1 - G_{i} \right| \\ &< \sum_{i=1}^{n} \exp\left(\int_{a}^{b} G\right) \cdot \exp(\frac{1}{2}) \cdot \exp(\frac{1}{2}) \cdot \exp(\frac{1}{2}) \cdot \left| \exp(G_{i} + k/n) - 1 - G_{i} \right| \\ &< \exp\left(\int_{a}^{b} G + \frac{3}{2}\right) \frac{7\epsilon}{8 \exp\left(\int_{a}^{b} G + \frac{3}{2}\right)} \\ &\leq \epsilon. \end{split}$$

Hence, $\left|\prod_{i=1}^{n} (1+G_i) - \exp(\int_a^b G)\right| < \epsilon$ so that $_a \prod_b (1+G)$ exists and is $\exp(\int_a^b G)$.

2. Suppose (2) is true and $\epsilon > 0$. Since $\int_a^b G^2 = 0$, $_a \prod^b (1+G)$ exists and is not zero, then there exists a subdivision D of $\{a, b\}$ such that if D' is a refinement of D, then

e

(1)
$$|G_i| < \frac{1}{2}$$
(2)
$$|\log a \prod^b (1+G)| <$$

(2)
$$\left|\log \frac{1}{\prod_{D'} (1+G_i)}\right| < \frac{1}{2}$$

(3)
$$\log(1+G_i) = \sum_{j=1}^{\infty} \frac{(-1)^{j-1}G_i^j}{j}$$

(4)
$$M = \sum_{j=2}^{\infty} \frac{(\frac{1}{2})^{j-2}}{j} \ge \sum_{j=2}^{\infty} \frac{\left| (G_i)^{j-2} \right|}{j}$$

(5)
$$\sum_{D'} G_i^2 < \frac{\epsilon}{2M} \cdot$$

Let $D' = \{x_i\}_{i=0}^n$ be a refinement of D, then

1970]

$$\begin{aligned} \left| \log_{a} \prod^{b} (1+G) - \sum_{i=1}^{n} G_{i} \right| \\ &\leq \left| \log_{i} \prod_{i=1}^{n} (1+G_{i}) - \sum_{i=1}^{n} G_{i} \right| + \left| \log_{D'} \frac{a \prod^{b} (1+G)}{D' \prod_{i} (1+G_{i})} \right| \\ &< \left| \sum_{i=1}^{n} \left[\log(1+G_{i}) - G_{i} \right] \right| + \frac{\epsilon}{2} \\ &= \left| \sum_{i=1}^{n} \left[\sum_{j=1}^{\infty} (-1)^{j-1} \frac{G_{i}^{j}}{j} - G_{i} \right] \right| + \frac{\epsilon}{2} \\ &= \left| \sum_{i=1}^{n} \sum_{j=2}^{\infty} (-1)^{j-1} \frac{G_{i}^{i}}{j} \right| + \frac{\epsilon}{2} \\ &= \left| \sum_{i=1}^{n} \left[G_{i}^{2} \cdot \sum_{j=2}^{\infty} (-1)^{j-1} \frac{G_{i}^{j-2}}{j} \right] \right| + \frac{\epsilon}{2} \\ &\leq \sum_{i=1}^{n} \left[G_{i}^{2} \cdot \sum_{j=2}^{\infty} \frac{\left| G_{i} \right|^{j-2}}{j} \right] + \frac{\epsilon}{2} \\ &\leq M \sum_{i=1}^{n} G_{i}^{2} + \frac{\epsilon}{2} < M \cdot \frac{\epsilon}{2M} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Hence,

$$\left|\log_{a}\prod^{b}\left(1+G\right)-\sum_{i=1}^{n}G_{i}\right|<\epsilon$$

so that $\int_a^b G$ exists and is $\log_a \prod^b (1+G)$.

REMARK. As noted by the referee, a function G from $S \times S$ to N may have the property that $\int_a^b G^2 = 0$ and $\int_a^b G$ exists yet G fails to be of bounded variation on [a, b]. As an example of such a function we offer the following: Suppose for $0 < x \le 1$, $g(x) = x \sin(\pi/x)$ and g(0) = 0 and for each $0 \le x \le 1$, $0 \le y \le 1$, G(x, y) = g(y) - g(x). $\int_0^1 G^2 = \int_0^1 G = 0$, but $\int_0^1 |G|$ does not exist.

Bibliography

1. B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297-322. MR 32 #6167.

2. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148-173. MR 26 #1726.

3. H. S. Wall, Concerning harmonic matrices, Arch. Math. 5 (1954), 160–167. MR 15, 801.

SOUTHWEST TEXAS STATE UNIVERSITY, SAN MARCOS, TEXAS 78666