
OSCILLATING SOLUTIONS OF THIRD ORDER
DIFFERENTIAL EQUATIONS
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Abstract. Third order ordinary linear differential equations

are investigated with respect to the property of having a basis for

solutions that consist of three oscillating solutions yet some non-

trivial solution of the equation is nonoscillatory.

1. Introduction. We will consider the equation

(l) /" + P(0y" + Q(0y' + R(0y = o

wherein we will always assume that the coefficients are continuous for

all large t. A solution of (1) will be called oscillatory if it changes sign

for arbitrarily large t. All other solutions are said to be nonoscillatory.

Clearly, (1) always has the trivial nonoscillatory solution y = 0. Much

of the oscillation literature for third order equations is cited by C. A.

Swanson [ó].

It is easy to exhibit an equation (1), even with constant coefficients,

for which no solution oscillates. The purpose of the present paper is to

go toward the other end of the spectrum by considering equations (1)

for which there are three linearly independent oscillating soluions but

for which there is a nontrivial nonoscillatcry solution.

As an example of such an equation consider y"'+y = 0. If Ui = e~',

u2 = e'12 cos(\/3i/2)i Ui = e'12 sin(V3 t/2) then the equation has the

three linearly independent solutions ui-\-u2, u2, u% which all oscillate

yet, of course, the equation has nontrivial nonoscillatory solutions.

By contrast, one can show that it is not possible to find three linearly

independent oscillatory solutions of y"'—y = 0. The existence of

equations (1) for which all nontrivial solutions oscillate has re-

cently been demonstrated by J. M. Dolan [2]. Such equations are

not our primary concern here.

If yi(t), y2(t), y3(t) are three class C3 functions defined for all large t

and if their Wronskian does not vanish for all large t then one can

write an equation having these three functions as linearly independent

solutions by forming
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(2)

yi y2 y% y

y{ yí yl y'

yi y2 yz y

yi V2 y¡ y

= 0.

This equation has no singularities (for large /)•

Thus, one can find an equation for which all solutions (not iden-

tically zero) oscillate if one can find three oscillating functions

yit y¡< ys with nonvanishing Wronskian and such that any linear com-

bination of yi, y2, y¡ is oscillatory. In fact, this is equivalent to the

problem of finding such an equation since if yi, y2, y¡ are three class C3

functions with nonvanishing Wronskian, then these three functions

satisfy a unique equation (1).

It is clear that the property of linear combinations of oscillatory

functions being oscillatory is vital in the question of the existence of

equations (1) for which all nontrivial solutions oscillate. This ap-

proach is not unique, however, and, in particular, is not the approach

used by Dolan [2].

The equation (2) with solutions yi = e' sin t,y2 = e' cost, ys = el has a

basis for all solutions with 0, 1, 2 or 3 oscillatory elements. This

contrast with the constant coefficient case seems sufficiently novel to

warrant status as a theorem.1

Theorem 1. There are examples of equations (1) for which there is a

basis for all solutions with 0,1, 2, 3 nonoscillatory solutions.

2. In the Introduction we observed that the solutions of y'"+y = 0

have a basis in oscillatory functions. We now give a theorem from

which this follows as a corollary. In the proof of the theorem we will

need the fact that if U\, u2, u% are linearly independent solutions of (1),

then so are «i, mi+m3, u2-\-u3. Indeed, they have the same Wronskian.

As before, we assume the coefficients Qil), Rit) to be continuous

and now, even more, that R(t)GC2. There is no loss in generality in

taking Pit) =0 in (1) for oscillation theorems since this term can be

eliminated from (1) by the transformation

y = w exp I-I    P(s)ds 1.

Theorem 2. 7/î«

1 The author's argument to support Theorem 1 has been considerably shortened

by the argument given here by the referee.
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(3) y'" + 0(0/ + R(t)y = 0,

<2(¿):g0,i?(0>0,

2Q(t)/R(t) + d2(Rr\t))/dl2 Ú 0

aw¿ some solution of (3) oscillates, then there are three linearly inde-

pendent oscillatory solutions of (3) yet some nontrivial solution is non-

oscillatory.

Proof. According to Theorem 1.1 of Lazer [3] the equation has a

non trivial nonoscillating solution, N(t), for which N(t)^>c as £—>oo.

Unless Q(t)=0 we are unable to be sure that e = 0 (this interesting

open question is discussed by Lazer [3, p. 444]). By Theorem 1.4 of

[3] we have two linearly independent oscillatory solutions u(t), v(t)

which, with N(l), form a basis for the solutions of (3). Moreover, the

absolute values of the extrema of u(t), v(t) are bounded below by

jw>0 [3, Lemma 1.4]. We now take the nonoscillating solution N*(t)

of (3) defined as N(t) if c=0, as (m/2c)N(t) is c^O. With this choice

of N*(t), the solutions u(t) +N*(l), v(t)+N*(t) both oscillate and

with u(t) (or v(t)) form a basis for (3) to complete the proof.

In case Q(i) =0 one knows [5] that there is an oscillating solution

and, moreover, c = 0. In this case one has the following corollary to the

above theorem.

Corollary. If in

(4) /" + R(t)y = 0,

R(t)EC2, R(l)>0 and d2R-l(t)/dt2^0, then there are three linearly

independent oscillatory solutions of (4) yet some nontrivial solution does

not oscillate.

It is known [l ] that all solutions of the selfadjoint equation

(5) u"' + b(t)u' + ib'(t)u = 0

are given by
2 2

(6) u = kiyi + k2yiy2 + ksy2

where yi, y2 are linearly independent solutions of

(7) /' + \b(t)y = 0.

It is evident that (6) may be nonconstant and nonoscillatory (for

example, by taking b = 1, ki = 1, k2 — k-¡ — 0). Even worse, (5) is known

[l ] to have a solution without a zero (as is obvious if b(t) is constant).
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The nonoscillation criteria of Lazer do not apply in the case of (5)

since he specifically excludes this equation in [3 J.

Equation (5) may have all solutions periodic even when bit) is not

constant. To secure such equations one may take [4, p. 353] a class of

continuous functions bit) for which there are linearly independent

periodic (and oscillatory) solutions y\, y2 of (7) having a common

period. For such functions bit) all solutions (6) are periodic. We

summarize this paragraph in the following theorem.

Theorem 3. There exist nonconstant functions b(t) for which all

solutions of (5) are periodic. However, some solutions are nonoscillatory.
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