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Abstract. The formal adjoint for a first order matrix differen-

tial-difference operator is shown to be a true Hubert space adjoint,

and conditions under which such operators are selfadjoint (in a

Hubert space sense) are derived. Differential-difference operators

whose domains are defined by a given initial function cannot be

selfadjoint, whereas certain operators whose domains are defined

only by conditions at the endpoints of an interval can be selfadjoint.

In the past several years there has been considerable interest in

differential-difference equations (hereafter abbreviated by D. D.

equations) or differential equations with retarded argument. A large

majority of the publications in this area have dealt with existence

theory or stability theory for such equations. There seem to have

been very few results in the direction of boundary value problems and

adjoints for a D. D. equation. A. Halanay has given some results

concerned with boundary value problems in [4]. Also both he and

R. Bellman and K. Cooke use the formal adjoint of a D. D. equation

to obtain an analog of the variations of parameter formula [3, pp.

359-362] and [2, pp. 320-323].
This article considers the problem of determining an adjoint of a

D. D. equation from the point of view of linear operators in Hubert

space. We define two distinct operators, and in particular we investi-

gate the possibility of their being selfadjoint as operators on a dense

subset of a Hubert space. As far as is known to the author, this is the

first paper in which it is shown that the formal adjoint is also a

Hubert space adjoint.

Equations like those which we consider arise as Euler-type equa-

tions for variational problems with delayed argument having quad-

ratic integrand. See for example Hughes [S].

Throughout this paper A(, Bi denote continuous n by n matrices

defined on [a— t, ô+t] where r represents a positive real number.
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We also suppose that M and N are m by re constant matrices such

that the matrix (M:N) is of rank m, m¿2n. A prime will always

denote differentiation.

Problem I. Let H0 be the Hilbert space of re-dimensional vector

functions x defined on [a—r, b+r] whose components are in Z,2 and

x(t) =0, a—T^t<a. The inner product is given by (x, y) = fl+Ty*x

where y* is the transpose of y.

Define the boundary operator p(x) and the differential-difference

expression E(x) by the following formulas:

p(x) = Mx(a) + Nx(b + r),

E(x) = A0(t)x(t) + Ai(t)x(t ->) + A2(t)x(t + t)

+ B0(t)x(t) + Bt(t)x(t - t) + B2(t)x(t + t),      aSt^b,

E(x) = A0(t)x(t) + A^OxQ -t) + B0(l)x(l) + B!(t)x(t - r),

b^t^b + r,

where Ai, A2, B\, B« are not all zero.

We denote by D the set of all x in HQ with the following properties:

(i) x is absolutely continuous on [a, &+t].

(ii) E(x) is in if0-

Let us now define a differential-difference operator L:D—>H0 by

setting Lx = E(x) for all x in D.

Since D is dense in H0, there is a well-defined adjoint operator L*.

Theorem i.Ifz is in the domain of L*, then

L*z= - [A*o(t)z(t) + A\(t+T)z(t+T)]' +[B*0(l)Z(t) + B*(l+r)z(l+r)],

a^t<a-\-r;

L*Z= - [A*(t)z(t) + A*(t+r)z(t+T) + A*(t-r)z(t-r)]'

+ [B*(t)z(t) + B*(t+T)z(t+T) + B*2(t-T)z(t-T)], a+r^Kb;

L*z= - [A*(l)z(l) + A*2(t-r)z(t-T)]'+[B*(t)z(t) + B*2(t~T)z(l-r)],

b^t^b+r.

Let D0 be the set of all x in D such that

x(a) =0=x(b) =x(b-\-r) =x(a+r).

Let x be in D0 and solve the equation

(Lx, z) = (x, 0)   for 0.
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0 -  f z*(t)[A0(t)x(t) + Ai(t)x(t - r) + A2(t)x(t + r)

+ B0(t)x(t) + Bi(t)x(t -t) + B2(t)x(t + r)]dl

/b+r e*x(t)dt

¡*b+r

+ z*(l)[A0(l)x(t) + A^DxO - r)
J b

+ B0(l)x(t) + Bi(t)x(t - r)]dl.

In the terms involving x(t— t) and x(t—r) let s=t— t. Make the

substitution s=t-\-T in the terms with x(i-fr) and x(t-\-r). The

preceding expression then becomes

/» a+T

0 = {[z*(t)A0(l) + z*(t + t)Ai(1 + r)]x(t)

+ [z*(t)B0(t) + Z*(t + r)Bi(t + t) - d*]x(t))dt

+  f     {[z*(t)A0(l) + z*(t + r)Ai(t + r) + z*(t - r)A2(t - r)]x(t)
J a+T

+ [z*(t)B0(t) + z*(t + r)Bi(t + r)

+ Z*(t - r)B2(t - t) - 6*]x(t)\dl

+   f    T {[z*(t)A0(l) + z*(i - r)A2(t - r)}x(l)

+ [z*(l)Bo(t) + z*(t - t)B2(1 - r) - e*]x(t)}dt.

Integrating by parts and noting that x is in D0, we have the following

equation: 0 = fa+Til/(t)x(i)dt where

m = z*(l)A0(t) + 8*0 + r)Ai(t + t)

- I    [z*(s)B0(s) + z*(s + t)B!(s + r) - 8*}ds,    agt<a + T,

*(t) = z*(t)A0(t) + z*(t + r)Ai(i + r) + z*(t - t)A2(1 - r)

- f     [z*(s)B0(s) + z*(s + t)Bi(s + r)

+ z*(s - t)B2(s - t) - 0*]ds,       o + T& t<b,
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Ut)  = Z*(t)A„(t) + S*(< - t)A2(1 - t)

-  f  [z*(s)B<,(s) + z*(s - r)Bt(s - r) - 0*Jáí,     ¿á/áHr.

Now the fundamental lemma of the calculus of variations yields

thati/' is constant on each of the subintervals (a, a+r), (a-\-r, b), and

(b, è+r). Upon differentiation of \p and solution for 0, we arrive at the

result of the theorem.

The result of Theorem 1 shows that the operator L defined by

Lx=E(x) on D cannot be selfadjoint. However, using this result as

a guide, we now consider a D. D. operator whose adjoint has the

same form as the original operator.

Problem II. Let H be the Hilbert space of all w-dimensional vector

functions defined on [a— t, 6+t] whose components are square

integrable. The inner product is given by {x, y) =fa~l y*x.

Define the boundary operator X by the equation

\(x) = Mx(a - r) + Nx(b + t)

and define the symbol D(x) by the following D. D. expressions:

D(x) = Ao(t)x(l) + A2(l)x(t+T) + B0(t)x(t) + B2(t)x(t+T),        a-T^t<a;

D(x) = A0(t)x(t) + A1(i)x(t-T) + A2(t)x(l+r)

+ Bn(t)x(l) + B1(t)x(t-T) + B2(t)x(t+r), aSKb;

D(x) = Ao(t)x(t)-\-A1(t)x(t-T) + B0(t)x(t)+B1(t)x(t-T),        b^t^b+r.

Let B be the set of all x in H which satisfy the conditions :

(i) x is absolutely continuous on [a—r, b+r].

(ii) D(x) is in H.

We now define an operator A on B to H by the formula Ax = D(x)

for x in B. Since B is dense in H, there exists a well-defined adjoint

operator A *. Let B* be the domain of A *.

Theorem 2. Ifzis in B*, then

A*z= - [AÎ(f)g(t) + AÏ(.t+T)z(t+T)]'+BÏ(t)z(t)+Bt(t+r)z(t+T),

a — T^t^a,

A*z= - [A*(i)z(t) + A*(t+T)z(t+T) + A*2(t-T)z(t-T)]

+ B*(t)z(t) + B*1(t+T)z(t+T) + B*2(l-T)z(t-r), a^tSb,

AH= -[A*(t)z(t) + A*2(t-T)z(l-T)]' + B*0(t)z(t) + B*(l-T)z(t-r),

b^t^b+r.
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Again we solve the equation 0 = {Ax, z) — (x, 8) for 6. We must again

restrict x to the set B0= {x in B:x(a — r) =x(a) =x(b) —x(b-\-r) =0}.

The calculations are quite analogous to those used in the proof of

Theorem 1.

Let B° be the set of all x in B with the property that X(x) =0. Let

B° be the domain of A and let B°* be the domain of A *.

Theorem 3. If z is in B0*, then z satisfies the following boundary

conditions :

A0(a — r)z(a — t) + A1(a)z(a) = — M*c,

A*0(b + r)z(b + r) + A*2(b)z(b) = N*<r

where a is an m-dimensional vector.

Let x be in B and z in B*. Then

(Ax, z) — (x, A*z)

=   f     {z*(t)[A0(t)x(l) + A2(t)x(t + r) + B0(t)x(t) + B2(t)x(t + t)]

+ {[z*(t)A0(t) + z*(t + r)Ai(t + r)]'

- z*(t)B0(t) - z*(l + r)Bi(t + T)\x(t)\dt

> b

+    'f   {z*(t)[AB(t)x(t) + Ai(t)x(l -r) + A2(t)x(t + r)
Ja

+ B0(t)x(t) + Bi(t)x(t - t) + B2(t)x(l + T)]

+ {[z*(t)A0(t) + z*(t + r)Ai(t + r) + z*(t - r)A2(t - r)]'

- z*(t)B0(t) - z*(t + r)Bi(t + r) - z*(t - r)B2(t - r) \ x(t) \ dt
f b+r ' '

+ {z*(l)[A0(t)x(t) + Ai(t)x(t -t)+ Bo(t)x(t) + Bi(t)x(t - r)]
J b

+ {[z*(t)A0(t) + z*(t - r)A2(t - r)]'

- z*(l)B0(t) - »*(/ + r)Bx(t + T)}x(t)\dt

f    {[z*(t)A0(t) + 8*0 + rMiO + T)¡x(t)}'dt
" a—T

+  f   {[z*(t)AQ(t) + 8*0 + r)Ai(t + r)

+ z*(l- r)A2(t-T)]x(t)}'dt

Xb+r
{[z*(t)A0(t) + 8*0 - r)A2(t - T)]x(l)}'dt.
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Now we have the equations

0 = [z*(a-)A0(a) + z*(a + r-)^i(a + r)]x(a)

— [z*(a — T)A0(a — t) + z*(a+)A1(a)]x(a — t)

+ [z*(b-)A0(b) + z*(b + r)Ax(J> + t) + z*(b - r-)A2(b - r)}x(b)

- [z*(a+)A0(a) + z*(a + r+)^i(a + r) + z*(a - r)A2(a - r)]x(a)

+ [z*(b + r)A0(b + t) + z*(b-)A2(b)]x(b + t)

- [z*(b+)A0(b) + z*(b - r+)A2(b - r)]x(b)

= [z*(a-)A0(a) + z*(a + T-)A¿a + t) - z*(a+)A0(a)

— z*(a + r+)A1(a + t) — z*(a — r)A2(a — r)]x(a)

+ [z*(b-)A0(b) + z*(b + r)Ax(b + r) + z*(b - r-)A2(b - r)

- z*(b+)A0(b) - z*(b - r+)A2(b - r)]x(b)

+ [z*(b + r)A0(b + r) + z*(b-)A2(b)]x(b + t)

— [z*(a — T)A0(a — t) + z*(a+)A1(a)]x(a — t).

We conclude that each of the first two expressions in brackets is

zero as well as

[z*(b + r)A0(b + r) + z*(b-)A2(b)]x(b + r)

- [z*(a - r)A0(a -t) + z*(a+)A1(a)]x(a - t) = 0.

Hence there exists a constant w-dimensional vector er such that

z*(a - T)A„(a - r) + z*(a+)Ai(a) = - o-*M

and

z*(b + r)A0(b + t) + z*(b-)A2(b) = o-*N.

The conclusion of the theorem follows by transposition.

It is to be noted that as a result of the proof of Theorem 3, we find

that the differentiated portion of the operator A* is absolutely con-

tinuous on [a— t, b+r].

Also as a result of Theorem 3, we find that A cannot be selfadjoint.

However if ^4i=^42 = 0 on [a— r, b-\-r\, then A has the possibility of

being selfadjoint. The following theorem is proved as in Reid [6].

Theorem 4. The operator A with ^4i=^42 = 0 is selfadjoint

if and only if A0=-A*, B0=B*-A*', B?(t+r) =B2(t), and

MAo(a -r)-iM* = NAo(b+T)-1N*.
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