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Abstract. It is proved that the monoidal transform of an inte-

gral noetherian scheme with respect to a sheaf I of ideals is normal

if and only if high powers of I are complete. The analogous theorem

for linear systems is included, and as an application, it is proved

that a rational singularity is absolutely isolated.

A key geometric result of the elementary theory of linear systems is

that a projective variety is normal if and only if the hypersurface

sections of high degree form a complete linear system. This theorem

has an exact analogue in the theory of complete ideals: the monoidal

transform of a noetherian domain with respect to an ideal / is normal

if and only if high powers of I are complete. Though this result is

implicitly contained in the appendix to Zariski-Samuel which works

out the two parallel theories, as well as in papers of Muhly, Nagata,

and especially Rees [3], it does not seem to be explicitly stated and

proved anywhere. We do so here, treating the two theories together;

the proof seems new even in the linear systems case. The only tech-

nical tool needed is the notion of superficial element, though projec-

tive cohomology could be used instead.

As an application, we prove that the first neighborhood of an iso-

lated rational singularity of a surface is always normal.2 This shows

that such a singularity has only isolated singularities in its successive

neighborhoods, never multiple curves; for a rational double point in

characteristic zero, this was proved by Brieskorn.

1. Algebraic formulation. We recall briefly the essential parts of

Zariski-Samuel  [2]. Suppose one has a field K containing both a
-
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domain A and an A -module 7. The integral closure of 7 in £ is

(1) 7' m \z G K | 3" + alZ"~l + • • • + a» = 0, a< £ 7'}

and by an elementary theorem, this is also the completion of 7 in K:

(2) 7' = fi RJ,       S = {v\Rv^ A\,
»es

where £„ is the valuation ring of the valuation v of £.

We introduce the graded algebras (we take Ia = A)

(3) R = U 7»,       5 = II (7")'.

Note that (2) shows that (Im)'(In)'Q(Im+n)', so that S is a graded R-

algebra.

Let xi, Xt, ... be a set of nonzero generators for 7, and consider the

localizations

(4) Ri=^\FePy       5..= {||GG(7*)j.

Then £¿ and 5¿ are subrings of £, and a routine argument using the

integral equations (1) shows that

(5) Si = R(.

Since Xj¡ ■ ■ ■ Xj„ = ixjjx¡) ■ ■ ■ {.Xjjxi)x", one has in K

(6) Ril"= Rix",   SJn = Six",       n ^ 0.

Proposition 1. 7/7 is of finite type, (7n) ' = n,S¿7n, n ^ 0.

Proof. This is essentially [2, p. 354, Lemma]. Let S< be the set of

valuations of K such that Rv~DRi. Then we claim S = Us„ for if we

are given any z>£S, we find that index i for which v(x¡) is minimum.

Thenz>(x„/x,) ^0 for all»', soif£S¿. Thus

(7n)' = n n p„7n= n n tW= n-W
i   »ES¿ i   uES,- »

according to (2), (6), and (5).

Proposition 2. If lis of finite type and A is noetherian,

I" = PI RJn   for n ^ n0.

Proof. This is really projective cohomology, but one can use su-

perficial elements instead. Recall [3 ] that if û is an ideal in a noetherian
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domain, zGud is superficial of degree dfor a if

(7) an+d:z = a"   for « 2: «„.

If z is such an element, then it follows immediately that

(8) an+dk-zk _ an    for n ^ n0, k > 0.

Superficial elements exist, though not necessarily for d = 1.

The proof of the proposition takes place inside P. Let I he gen-

erated by xi, • • • , xm. Then in P we have the ideals

7 = n i",   p = xi in.
n>0 n£*

P is noetherian, since it is finitely generated (by the xi) over A, and it

is also a graded subring of the graded ring P = JJPCn), where P(n) =P

for all «2ï0. To prove the non trivial inclusion 3 of the proposition,

let zEÎd be superficial of degree d for 7, and «0 be as in (7). Suppose

given y GP such that

y E Ril",        n 2î M0, all i.

We view y as an element of P(„> in what follows. For some common

exponent which we may take to be a multiple kd of the integer d,

M -n+kd .
Xi y E I      ,       n 2: «0, all i.

Since zEId, it follows in the usual way that if m is large

zkmy G Jn+hdm,       n 2: m0.

Therefore yG7n, according to (8). Thus yEInr\K(n)=I". (If one is

only interested in the case IÇ^A, the same proof can be carried out

entirely inside A.)

2. Geometric formulation. We translate the preceding section into

geometry, using the simplest properties of the functor Proj on commu-

tative graded algebras [4]. Let F denote Spec A, and let V be Proj R

and W denote Proj S, so that we have the dual diagrams

R —> S        V <— W
It* IT

(9) \    / \    Sv   .

Since P is generated over A by the x„ the definition of Proj P shows

that Fis covered by the affines F, = Spec P¿. It is easily checked that
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"■_1(Fi) =IF,'=Spec Si. Then (5) shows that Wi is the normalization

of Vi, so that without finiteness assumptions,

(10) Proj 5 is the normalization in K of Proj R.

Theorem 1. If In is complete in Kfor large n, then Proj R is normal.

The converse holds, provided A is noetherian, I is of finite type, and K is

the quotient field of A [ • ■ ■ ,Xi/xj, • • • ].

Proof. If /" = (/")', then w* is an isomorphism in high degree. An

elementary property of Proj shows that -k is then an isomorphism, so

Fis normal, by (10). Conversely, if Fis normal and K is its function

field, then by (10), V=W. Thus V,■= Wi and Ri = Si for all *, so that
jn — /jny by Propositions 1 and 2, if n ^m0.

Let Y be an integral noetherian scheme, d a coherent sheaf of

fractional ideals on Y. The F-scheme F = Proj(JJi") is then called

the monoidal transform of Y with respect to ä [4, 8.1.3]. To apply

Theorem 1, we take K to be the function field of Y.

The completion ä' we define to be the sheaf such that T(U, ä')

= T(U, â)' for any affine Z7C Y. This defines a sheaf, as one sees easily

using (2). If we now set IF = Proj(IJ(^n)')> then PF is the normaliza-

tion of V. Routine globalization plus Proposition 1 gives

Theorem 2. The monoidal transform V of Y with respect to â is a

normal scheme if and only if dn is complete for n large. If W is the nor-

malization of V, and v : W-* Y the structural map,

v*v*¿n = (¿n)'   for n ^ 0.

Consider the case of a linear system on a ¿-variety X, now. In

Theorem 1, we take Y = Spec k and K = k(X). The module / is then

a finite-dimensional ¿-space of functions on X, generated say by

Xo, ■ • • , xn. Then R = k[txo, ■ ■ ■ , txn] where t is a transcendental, V

is a projective ¿-variety, and since the x¿ are functions on X, we get a

dominating rational map <p '• X^> V.

Theorem 1 then says that V is normal if In is complete for large n,

with the converse holding if for instance <t> is birational. As a special

case, we could take <j> to be the identity map; this will be so when

X = Proj k [to, ■ ■ ■ , t„] and we take / to be the subspace generated by

the functions i,-//0 (assuming t0 transcendental over the /,•). In view of

the usual definitions, we conclude that X is normal if and only if the

linear system of hypersurface sections of degree n is complete for large n.

As another example, assume X is normal, D a divisor on it, and

take /= {fEK\f^ -£>}. Then / is complete [2, p. 358], one calls <j>

customarily the "rational map defined by \D\,r' and we conclude
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that the image of a normal variety under the rational map determined by

a complete linear system is normal.

3. Application to rational singularities. We take a two-dimensional

normal local domain A with maximal ideal m and algebraically closed

residue field. Put Y = Spec A and let p be the closed point; it is an

isolated singularity of Y since A is normal. Such a singularity can be

resolved by a sequence of monoidal transformations, each followed by

a normalization, if needed. This process leads ultimately to a non-

singular scheme W with a proper birational morphism

h:W^W -* F

which factors through W, the normalized monoidal transform of Y

with respect to m. Theorem 2 may now be extended to show that

(11) h*h*mn = (m")'   for all n ^ 0.

To see this, remark first that since W is the normalized monoidal

transform, it follows from (6) that gn=v*mn is an invertible sheaf of

ideals. Now we claim that M*M*áJn = á» for all »^0. For since this

assertion is local on W, we may assume gn = Qw, in which case it says,

if/ is in the quotient field of A, then

ß*fEr(w,ow)^fer(w,ew).

This is true, for if / were not holomorphic on W, it would have a

polar divisor (since W is normal), hence so would p*f.

Putting this together with Theorem 2 proves (11), since

h*h*mn = v*v*mn = (mn)'.

Suppose now that p is a rational singularity. By definition, this

means that £'&*0^ = 0, i.e., that the singularity contributes nothing

to the arithmetic genus of the surface. In [l], Artin studies the

divisor Z = h~1(p), and one of his key results is

(12) For all n > 0,    if / £ A and h*f ^ nZ,    then/ £ m\

In other words: for all «>0, h*h*mn = mn. Comparing with (11)

shows that for a rational singularity, mn is complete for «>0. There-

fore by Theorem 2, its monoidal transform is normal and has only

isolated singularities. Since the Leray sequence for W—»PF—» F shows

that these too are also rational, it follows by induction that the

rational singularity is absolutely isolated, i.e., the successive steps in

the resolution process produce only isolated singularities, never

multiple curves.
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