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Abstract. A convergence theorem of D. J. Newman for the

Hardy space H1 is generalized to several complex variables.

Specifically, in both Hl of the polydisc and Hl of the ball, weak

convergence, together with convergence of norms, is shown to

imply norm convergence. As in Newman's work, approximation of

Ll by H1 is also considered. It is shown that every function in Ll of

the torus, (or in L1 of the boundary of the ball), has a best Hl-

approximation which, in several variables, need not be unique.

D. J. Newman [4] has shown that H1 of the unit disc, while not

uniformly convex, does have the following properties:

(i) Weak convergence, together with convergence of norms, im-

plies norm convergence in H1.l

(ii) If the distance between kEL1 and a sequence of PP-functions

tends to d, (d = distance between k and Hl), then the sequence con-

verges in norm to the unique best PP-approximation of k.

In this paper, (i) will be generalized to both the unit polydisc and

unit ball in several variables. In fact, as in one variable, a somewhat

stronger result will be obtained. On the other hand, examples will be

given to show that (ii) does not generalize to these settings.

The results presented here are contained in my doctoral disserta-

tion, written under the supervision of Professor Walter Rudin. I am

most grateful for Professor Rudin's many valuable suggestions during

the preparation of this paper.

Convergence theorem. Let UN denote the unit polydisc in the

space of N complex variables. The distinguished boundary of UN is

the torus, TN. The PP-norm in UN is defined by

11/IIi.jv =   sup     I      \f(rw)\dmN(w),
0<r<l   J TN
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1 I am informed by the referee that actually this result predates Newman's paper.

According to a paper by V. P. Havin [3], the theorem was first proved for the unit

disc by S. Warschawski in 1930 and subsequently generalized to certain multiply

connected regions by G. Ts. Tumarkin.
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where dm^ denotes the Haar measure of TN. Hl(UN) consists of those

holomorphic functions on UN whose 77l-norm is finite.

If/ is any function on UN, and wETN, the "slice function"/„ is

defined on IP by /«(X) =/(Xw) ÇXEU1). If hEH\UN), then A«,
EHl(Ul) for almost all wETN, and, as in [6, Lemma 3.3.2], the

invariance of the measure dmtf implies

\h\\i.N =   I     ||A„||i,i¿»»Ar(wO.
J tN

Theorem 1. Supposef,fnEHl(UN) with

(i) /n~>/ uniformly on compact subsets of UN, and

(ii) ||/„||i.W-||/||i.*.

rAe«||/„-/||i,*-+0.

In proving this theorem for N = l, Newman used a factorization of

Tf'-functions involving Blaschke products. This technique is not

applicable when iV> 1 ; nor is the more recent proof of C. N. Kellogg

[2 ] in which functions in 771 are expressed as products of 772-functions.

The proof of the theorem for A^>1 given here applies the one-

variable result to the slice functions/«, w.

Lemma. Suppose <£„^0, <£ = lim inf </>„, <p and <j>nELl, ¡j/S4>, and

lim supf<f>„^f\f/. Then, <¡>=ip a.e., and there exists nj—><x> such that

4>nj-*^ a.e.

Proof of Lemma. Fatou's lemma gives the first inequality in

I   (j> ̂ lim inf I  <pn ̂ lim sup I  <j>n ^   IV =   I  <t>-

It follows that0 =f a.e. and that

(1) lim J <*>„ = J  <p.

If g„=inf {<f>„, <pn+u ■ • • }, the monotone convergence theorem gives

(2) \imfgn=f<t>.

Since gn^<j>n, (1) and (2) imply /|g„— <£„|—>0; hence, (g„,— <£„,)—>0

a.e. for some sequence n—>». But gn—xt> a.e., so <j>nj—*<j> a.e.

Proof of Theorem 1. For w E TN, define

*.W = ||/».»||i.i,    and   4>(w) = ||/„||i.i.
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For 0 <r < 1, hypothesis (i) gives

/|/„(rX) | d>Wi(X) = lim \fn.airX) \ dmi(K) ^ liminf 0n(w),

so that

(3) ^(w) ?2 lim inf <£„(w).
n—* oo

Hypothesis (ii) says that

(4) lim    f   *, - f   *.
n—■* oo    »/ y-« •/   y "

By the lemma, (3) and (4) imply that every sequence Si of positive

integers contains a subsequence S2 such that for almost all w, <f>„iw)

—>\piw) as n—>oo in S2. For such w, Newman's theorem asserts that

(5) ||/n,» —/»||i,i—*0    as n —» a>    in S2.

We must show that

(6) I    ||/„,w — fu\\i.idmNiw) ->0    as m —> 00    in S2.

If TN =AVJB, this integral is majorized by

(7) I   \\fn.u, — fa\\i,idmNiw) +  I   <pniw)dmNiw) +  I   \piw)dmNiw).
J B J a Ja

By Egoroff's theorem and (5), A and B can be so chosen that

||/»,«>—/w||i,i—*0 uniformly on B as «—><» in 52, and so that/x ^<e. It

follows that <!>„—rf uniformly on B, and hence that Ja <£n<e for large

n65¡. Hence (7) tends to zero as n—»°o in 52. Thus every sequence Si

contains a subsequence S2 for which (6) holds, i.e., for which

||/n—/Hi.iv-*0. This completes the proof.

With only minor notational changes, this proof generalizes New-

man's theorem to the unit ball BN. In particular, if dvx denotes the

normalized, orthogonally invariant measure on dBN, the iî'-norm for

BK is defined by

11/111 =   sup    j       \firw) I dvNiw).
0<r<l  J ñBN

If / is a function on BN, and wEdBN, the slice function/«, is defined,

as before, by/„,(X) =/(Xw) ÇKEU1). Moreover, the invariance of the

measure dvN implies the basic equality
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||a||i = I    ||a„||i,i¿cjv(w).

Remark. As defined here, Hl(U2) can be identified with a closed

subspace of Ll(T2): namely, the class of all P^functions whose

Fourier transform vanishes outside the set of lattice points in the first

quadrant of the plane. In [2], Kellogg shows that Newman's theorem

does not generalize to the space of all functions in Ll(T2) whose

Fourier transform vanishes on a certain half plane.

Best-approximation problem. If hEH1(UN), the radial limits

h*(w) =limr_i&(rw) exist for almost all wETN. Moreover, h*ELl(TN)

and

h(z) =   \     P(z, w)h*(w)dmN(w)        (z E UN),
J t"

where P(z, w) is the Poisson kernel in  UN. A discussion of these

matters appears in [ó].

Let 11/111, n denote the P'-norm oifELl(TN). Then,

11/11 i.N =   I     \\fw\\i,idmN(w),
J tn

where now,/„(X) =/(Xw) for A G T1.

Theorem 2. If kELl(TN), there exists a function h0EHl(UN) for

which

||* - h*\\i.N = infjll* - h\,N:h E h\uN)).

For N = 1, Theorem 2 is derived easily from a result of Rogosinski

and Shapiro [5, Theorem 8, p. 303]. A similar argument could be

given when N>\. However, the form of the proof given here seems

somewhat more conducive to further generalization.

Proof   of   Theorem   2.   Let   ¿ = inf [\\k-h*\\i,N:hEHl(UN)}.

There exist functions hnEH1(Uif), and a complex measure dp on TN

such that II* — A»||i, n—*d, and
*

(8) dp = weak-star limit of hndm¡f.

For zEUN, define h0(z) =fT»P(z, w)dp(w). It follows from (8) that

the Fourier coefficients of A„ converge to those of dp. Hence Ao is

holomorphic. And since ||A0||i,ív^||m||. A0 is in P^P^). Hence dp

= h*dmN, and (8) implies d* —A*||i, 2válim||A—A*||i, N=d. This com-

pletes the proof.
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Theorem 2 holds with UN and TN replaced by BN and dBN respec-

tively. The proof is identical to that just given, with one exception;

we can no longer use Fourier coefficients to show that A0 is holomor-

phic. Instead, we note that the Poisson integral representation of

A„, together with the boundedness of {||A„||i,jy}, implies uniform

boundedness of \hn\ on compact sets. In addition, weak-star con-

vergence of hndvif to du gives pointwise convergence of A„ to ho. It

follows that A„—>Ao uniformly on compact subsets of BN. (Lars

Gárding and Lars Hörmander develop the relevant properties of

H\BN)m [l].)

Theorem 3. If N>\, there exists a function kEL1(TN) having

infinitely many best H1-approximations, (each of them constant).

Proof of Theorem 3. Suppose kELl{TN) and

(9) *(w) = k(Xw),   for all X E T\

Let hEHl(UN). For almost all w, the slice function A«, is in Hl(Ul),

while by (9), each Aw is constant. It follows that

|| A- - *(0)||i,i =  | A.(X) - A(0) |   = \f   (A.(X) - £(X))dmi(X) ,

and consequently,

(10) ||*-A(0)||ilWg  f     f   \ku(X) - ht(X)\ = ||*- A*||lfW.

Since equality holds in (10) only when A is constant, we conclude

that every best TP-approximation of A is constant.

To construct A with infinitely many best approximations, choose

a subset E of Tl with mi(E) = 1/2, and let A be the set of all points

(wi, • ■ ■ , Wn) in TN, for which wiw2 ■ ■ ■ Wn~i{wn)n~1 is in E. De-

fine k(w) to be 1 if wEA and — 1 if wETN — A. Notice that A satisfies

(9), and that mx(A) =1/2. It follows that the best TP-approxima-

tions of A are precisely the real constants, c, for which — l^cgl.

Except for the definition of A, this proof applies without change to

the analogous theorem for the ball. To define an appropriate func-

tion kEL\dBN), let E be the set of all (ax, • • -, aN) in RN for which

53 a2 = 1, a<^0, and ai^a2. Let A consist of those points

(aiXi, • • • , ünXn) in dBN with (ai, • • • , aN) in £, and (Xi, • • • , \n)

in 7*. Since the measure of A is 1/2, the function A which is 1 on A

and —1 on dBN—A has the required property.
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