## REGULAR-CLOSED, URYSOHN-CLOSED AND COMPLETELY HAUSDORFF-CLOSED SPACES

## H. HERRLICH

ABSTRACT. Recently M. P. Berri, J. R. Porter, and R. M. Stephenson, Jr. have given a survey on *P*-closed and *P*-minimal spaces. In the present paper the first two problems of this survey will be solved: (1) The product of two Urysohn-closed spaces need not be Urysohn-closed. (2) A completely Hausdorff-closed regular space need not be regular-closed.

Given a topological property P a P-space X is called P-closed provided X is a closed set in every P-space in which it can be embedded. For instance compact Hausdorff spaces are Hausdorff-closed but not vice versa. P-closed spaces (and the closely related P-minimal spaces) have been investigated extensively especially for separation properties P = Hausdorff, Urysohn, regular (includes  $T_1$ ). One of the major results states that P-closure (as well as P-minimality) is productive for P = Hausdorff. The corresponding problem for P = Urysohn and P = regular has been attacked by several authors. Scarborough and Stephenson proved independently that the product of an Urysohn-closed space and a Hausdorff-closed Urysohn space is Urysohn-closed. In §1 of the present paper we shall show that the product of two Urysohn-closed spaces need not be Urysohn-closed (Theorem 1). This settles Problem 2 of the survey of P-closed and P-minimal spaces presented recently by M. P. Berri, J. R. Porter and R. M. Stephenson, Jr. [2]. In addition in §2 we shall give a negative answer to Problem 1 of the above mentioned survey: Is a completely Hausdorff-closed regular space necessarily regular-closed? (Theorem 2.)

I am grateful to R. M. Stephenson, Jr. for pointing out an error in the original proof of Theorem 2.

1. Products of Urysohn-closed spaces. A topological space X is called a Urysohn-space provided that any two points of X have disjoint closed neighborhoods. It is easy to show that a Urysohn-space X is Urysohn-closed iff for any open filter F in X there exists a point

Received by the editors January 14, 1970.

AMS 1969 subject classifications. Primary 5452, 5423.

Key words and phrases. Urysohn-closed spaces, regular-closed spaces, completely Hausdorff-closed spaces, minimal topological spaces, products.

 $x \in X$  such that every closed neighborhood of x meets the closure of each member of F.

THEOREM 1. There exist Urysohn-closed spaces Y and Z whose product  $X = Z \times Y$  is not Urysohn-closed.

- PROOF. (a) Construction of Y. Let W be the set of all countable ordinals, and let I = [0, 1) be the half-open unit interval of the reals, both sets supplied with the usual order. The product  $P = W \times I$  can be ordered lexicographically and be supplied with the corresponding order topology. Let A denote the resulting space (Alexandroff's long line) and let  $A' = A \cup \{a\}$  be the one-point-compactification of A. If  $(D_1, D_2, D_3)$  is a fixed partition of I into three pairwise disjoint dense subsets (with  $0 \oplus D_2$ ) then  $(E_1 = W \times D_1, E_2 = W \times D_2, E_3 = (W \times D_3) \cup \{a\}$ ) is a partition of A' into three pairwise disjoint dense subsets. If B is the topology (=family of open sets) of A' then  $B \cup \{E_2, E_3\}$  is a subbase for a new topology of A'. The resulting space Y is Urysohn-closed.
- (b) Construction of Z. For i=0, 1 let  $w_i$  denote the least ordinal with cardinality  $\aleph_i$  and let  $W_i$  denote the set of all ordinals  $\alpha$  with  $\alpha \leq w_i$  supplied with the usual order and the corresponding order topology. If we remove the point  $(w_1, w_0)$  from the product space  $W_1 \times W_0$  we obtain the well-known Tychonoff plank T. Let  $T_1$  and  $T_2$  be two copies of T whose elements will be denoted by  $(\alpha, n, 1)$  and  $(\alpha, n, 2)$  respectively. For fixed  $\alpha < w_1$ ,  $n < w_0$ ,  $i \in \{0, 1\}$ , define  $U_i(\alpha, n) = \{(\beta, m, i) | \alpha < \beta < w_1, n < m \leq w_0\}$  and  $V_i(\alpha, n) = \{(\beta, m, i) | \beta < \alpha, m < n\}$ . In the topological union of  $T_1$  and  $T_2$  we identify for any  $n < w_0$  the two points  $(w_1, n, 1)$  and  $(w_1, n, 2)$ . To the resulting space Q we add a point t and define the set  $\{U_1(\alpha, n) \cup \{t\} | \alpha < w_1, n < w_0\}$  to be a base for the neighborhoods of t. The resulting space T is Urysohn-closed.
- (c)  $X = Z \times Y$  is not Urysohn-closed.  $F_0 = \{((\alpha, n, 2), (\gamma, r)) | (\alpha, n, 2) \in T_2, \alpha < \gamma < w_1, r \in D_2\}$  is an open subset of X, since for any point  $p = ((\alpha, n, 2), (\gamma, r))$  of  $F_0$  we have  $p \in V_2(\alpha + 1, n + 1) \times \{y | y \in E_2, (\gamma, r/2) < y\} \subset F_0$ . Consequently for any  $\alpha < w_1, n < w_0, F(\alpha, n) = F_0 \cap (U_2(\alpha, n) \times Y)$  is open in X and  $\{F(\alpha, n) | \alpha < w_1, n < w_0\}$  is a base for an open filter  $\mathfrak F$  on X. It remains to show that for each point x of X there exists a member F of  $\mathfrak F$  and an open set U containing a closed neighborhood of x with  $F \cap U = \emptyset$ . This is easy to see for  $x \neq (t, a)$ . In case x = (t, a), the set  $V = (T_1 \cup \{t\}) \times (E_1 \cup E_3)$  is a closed neighborhood of x. It is sufficient to show that any point (z, y) of Y has a neighborhood which does not meet  $F_0$ . This is obvious for  $z \notin \operatorname{Cl}_z T_2$  or

 $y \in \operatorname{Cl}_Y E_2$ . Consequently we can assume  $z = (w_1, n, 1) = (w_1, n, 2)$  and  $y = (\alpha, r)$  with  $r \in D_1$ . But then  $W = \{(\beta, n, i) | \alpha + 1 < \beta \le w_1, i \in \{1, 2\}\}$   $\times \{y' | y' \in Y, y' < (\alpha + 1, 0)\}$  is a neighborhood of (z, y) which does not meet  $F_0$  since  $((\lambda, m, i), (\zeta, s)) \in W \cap F_0$  would imply  $\lambda < \zeta < \alpha + 1 < \lambda$ , which is impossible.

2. Regular-closed and completely Hausdorff-closed spaces. A topological space X is called completely Hausdorff provided that for any two distinct points x and y of X there exists a continuous, real-valued function  $f: X \rightarrow R$  with  $f(x) \neq f(y)$  (equivalently: provided there exists a continuous one-to-one map of X into a compact Hausdorff space).

Theorem 2. There exists a completely Hausdorff-closed regular space X which is not regular-closed.

**PROOF.** Let T be the Tychonoff plank described in §1, let Z be the set of integers, and let R be the topological union of countably many copies  $T_i$  of T ( $i \in \mathbb{Z}$ ) whose elements will be denoted respectively by  $(\alpha, n, i)$ . Identify in R for any  $i \in \mathbb{Z}$  and any  $\alpha < w_1$  the points  $(\alpha, w_0, 2i)$ and  $(\alpha, w_0, 2i+1)$ , and for any  $i \in \mathbb{Z}$  and any  $n < w_0$  the points  $(w_1, n, 2i-1)$  and  $(w_1, n, 2i)$ . Let Q be the corresponding quotient space of R and let  $\beta Q$  be its Čech-Stone-compactification. Then there exists exactly one point q in  $\beta Q$  such that each neighborhood of q meets each  $T_i$ . Form a new space P by replacing the point q in  $\beta Q$  by two different points  $q^+$  and  $q^-$  and calling a subset U of P a neighborhood of  $q^+$  (resp.  $q^-$ ) in P iff U contains  $q^+$  (resp.  $q^-$ ) and there exists an  $i \in \mathbb{Z}$  such that  $(U \setminus \{q^+\}) \cup \operatorname{Cl}_{\beta Q}(\bigcup_{j \leq i} T_j)$  (resp.  $(U \setminus \{q^-\}) \cup \operatorname{Cl}_{\beta Q}(\bigcup_{j \leq i} T_j)$ )  $Cl_{\beta Q}(U_{j \geq i}T_j)$  is a neighborhood of q in  $\beta Q$ . It is easy to verify that P is regular using the fact that for  $n \in \mathbb{Z}$ ,  $\operatorname{Cl}_{\beta Q}(\bigcup_{j>n} T_j) \cap \operatorname{Cl}_{\beta Q}(\bigcup_{j< n} T_j)$  $= \{q\}$ ; the proof of this fact is straightforward. Consequently, the subspace X obtained from P by removing  $q^-$  is not regular-closed. But X is completely Hausdorff-closed. For let Y be a Hausdorff space which contains X as a nonclosed subspace. Then there exists a point  $y \in \operatorname{Cl}_Y X - X$ . Each Y-neighborhood of y meets each  $\beta Q$ -neighborhood of q in Q. Consequently there exists no continuous function  $F: Y \rightarrow R$ with  $F(y) \neq F(q^+)$ . Hence Y is not completely Hausdorff.

## REFERENCES

- 1. M. P. Berri, *Minimal topological spaces*, Trans. Amer. Math. Soc. 108 (1963), 97-105. MR 27 #711.
- 2. M. P. Berri, J. R. Porter and R. M. Stephenson, Jr., A survey of minimal to-pological spaces, Proc. India Topology Conference, Kanpur, 1968 (to appear).

- 3. H. Herrlich,  $T_v$ -Abgeschlossenheit und  $T_v$ -Minimalität, Math. Z. 88 (1965), 285-294. MR 32 #1664.
- 4. J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159-170. MR 38 #6544.
- 5. C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131-147. MR 34 #3528.
- 6. C. T. Scarborough and R. M. Stephenson, Jr., Minimal topologies, Colloq. Math. 19 (1968), 215-219. MR 37 #3522.
- 7. R. M. Stephenson, Jr., P-minimal and P-closed spaces, Thesis, Tulane University, New Orleans, La., 1967.
- 8. ——, Remarks on minimal topological spaces, Notices Amer. Math. Soc. 13 (1966), 256. Abstract #66T-163.

University of Florida, Gainesville, Florida 32601