ON THE CONVEXITY OF LEMNISCATES

DOROTHY BROWNE SHAFFER¹

ABSTRACT. Let L_1 denote the lemniscate $\left|\prod_{\nu=1}^{n}(z-\zeta_{\nu})\right|=1$. Assume the poles ζ_{ν} are inscribed in the disc $|z| \leq a$. Let $z_0 = n^{-1} \sum_{\nu=1}^{n} \zeta_{\nu}$. Conditions for the convexity of L_1 are established in terms of a and z_0 . Sharp bounds are derived for real ζ_{ν} .

Let L_1 be the lemniscate L_1 : $|p(z)| = \prod_{i=1}^n |z - \zeta_i| = 1$. It was proved by Erdös, Herzog and Piranian [1] that L_1 is convex if all the ζ_i are inscribed in a disc of radius $a \le \sin \pi/8/(1 + \sin \pi/8)$. This estimate was improved by the author [3] to $a \le 2^{1/2} - 1 = .414$. It is the object of this note to improve these bounds; a sharp result is obtained for the case of a real polynomial.

THEOREM 1. L_1 is convex if $2^{1/2}-1 \le a \le 1/3^{1/2}$ and

(1)
$$|z_0| \le (1 - 3a^2)/(2^{3/2}a)$$
 where $z_0 = n^{-1} \sum_{i=1}^n \zeta_i$.

PROOF. The author proved [3] that any lemniscate, with its zeros inscribed in a disc of radius a is convex if it lies outside of a concentric circle of radius $2^{1/2} a$. By a lemma due to Pommerenke [2], L_1 contains the disc $|z-z_0| \le (1-a^2+|z_0|^2)^{1/2}$, if $a^2-|z_0|^2 \le 1$.

It follows that L_1 lies outside the disc with center at the origin, radius

$$(2) \qquad (1-a^2+|z_0|)^{1/2}-|z_0|$$

and L_1 is convex if

$$(3) (1-a^2+ |z_0|^2)^{1/2}-|z_0| \ge 2^{1/2}a.$$

Inequality (3) solved for $|z_0|$ gives condition (1).

If $|z_0| = 0$, i.e. the center of gravity of the zeros is assumed to be the center of the disc containing the zeros we obtain that L_1 is convex if $a \le 1/3^{1/2}$. If z_0 is allowed to approach the boundary, $|z_0| = a$, the previous condition $a \le 2^{1/2} - 1$ follows.

Presented to the Society, August 28, 1969 under the title Geometric properties of equipotential surfaces and curves; received by the editors November 10, 1970.

AMS 1969 subject classifications. Primary 3010.

Key words and phrases. Lemniscate, level line, convexity.

¹ During the course of this work the author was a National Science Foundation Faculty Fellow. Publication supported by NSF grant GP-23504, Fairfield University.

THEOREM 2. Assume in addition all the ζ_i real, then L_1 is convex if either $a \le 1/2$ or $1/2 \le a \le 1/2^{1/2}$ with $|z_0| \le (1-2a^2)/2a$.

The proof follows from the fact that the author's proof of the convexity condition implies that a lemniscate is convex at z if the angle subtended at z by any pair of zeros is acute. It follows that for L_1 with all the zeros on a diameter of the disc, L_1 is convex if it lies outside the same disc. Applying condition (2) this will be true if $(1-a^2+|z_0|^2)^{1/2}-|z_0| \ge a$, and the statement of the theorem follows by solution of the inequality.

These bounds are sharp, they are approached for large m by the lemniscate $|p(z)| = |(z - \frac{1}{2})^m (z + \frac{1}{2})| = 1$ and for $z_0 = 0$ by

$$|(z-2^{-1/2})(z+2^{-1/2})|=1.$$

REFERENCES

- 1. P. Erdös, F. Herzog and G. Piranian, Metric properties of polynomials, J. Analyse Math. 6 (1958), 125-148. MR 21 #123.
- 2. Ch. Pommerenke, On metric properties of complex polynomials, Michigan Math. J. 8 (1961), 97-115. MR 27 #1564.
- 3. Dorothy Browne Schaffer, Distortion theorems for lemniscates and level loci of Green's functions, J. Analyse Math. 17 (1966), 59-70. MR 36 #361.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012