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Abstract. Let Li denote the lemniscate | n?-i(z-f»)| =L

Assume the poles f, are inscribed in the disc \z\ Sa. Let Zo =

w~'/ .?_if„ Conditions for the convexity of ¿i are established in

terms of a and Zo. Sharp bounds are derived for real f».

Let L\ be the lemniscate Li:|£(z)| =IJ"=i \z — f»| =1. It was
proved by Erdös, Herzog and Piranian [l ] that Li is convex if all

the f,- are inscribed in a disc of radius a^sin 7r/8/(l+sin ir/8). This

estimate was improved by the author [3] to a:S21/2 — 1 =.414. It is

the object of this note to improve these bounds; a sharp result is

obtained for the case of a real polynomial.

Theorem Hits convex if 21I2 — Í ¿a ^ Í/31'2 and
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(1) | zo |   S (1. - 3a2)/(23'2a)    where z„ = w"1 52 f*
f-i

Proof. The author proved [3] that any lemniscate, with its zeros

inscribed in a disc of radius a is convex if it lies outside of a con-

centric circle of radius 21'2 a. By a lemma due to Pommerenke [2],

Li contains the disc |z—z0| â(l— o2+|zo| 2)1/2, if o2— |z0| 2^1.

It follows that L\ lies outside the disc with center at the origin,

radius

(2) (1 -a2+  |zo|)1/2-   |zo|

and Li is convex if

(3) (1 - a2+  |zo|2)1/2-  | 8o |   è 2"2a.

Inequality (3) solved for |z0| gives condition (1).

If | zo| =0, i.e. the center of gravity of the zeros is assumed to be the

center of the disc containing the zeros we obtain that L\ is convex if

a5^1/31/2. If zo is allowed to approach the boundary, |z0| =a, the

previous condition a^21/2 —1 follows.
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Theorem 2. Assume in addition all the f ¿ real, then L\ is convex if

either a^l/2 or l/2^a¿í/2112with |z0| ^(1-2<z2)/2a.

The proof follows from the fact that the author's proof of the

convexity condition implies that a lemniscate is convex at z if the

angle subtended at z by any pair of zeros is acute. It follows that

for L\ with all the zeros on a diameter of the disc, L\ is convex if

it lies outside the same disc. Applying condition (2) this will be true

if (1— a2+|z0| 2)1/2— |z0| ^a, and the statement of the theorem

follows by solution of the inequality.

These bounds are sharp, they are approached for large m by the

lemniscate \p(z)\ = \ (z — §)m(z+|)| =1 and for z0 = 0 by

|(z_2-i/2)(z+2-"2)| =1.
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